La aplicación de Gauss de superficies mínimas en el grupo de Heisenberg

No hay miniatura disponible

Fecha

2019-11-26

Título de la revista

ISSN de la revista

Título del volumen

Editor

Pontificia Universidad Católica del Perú

DOI

Resumen

El objetivo principal de este trabajo es el estudio de las superficies mínimas en el grupo de Heisenberg tridimensional, a partir de su aplicación de Gauss. Inicialmente estudiamos la geometría riemanniana del grupo de Heisenberg con métrica invariante a izquierda, calculando los campos invariantes a izquierda, las curvaturas, las geodésicas y el grupo de isometrías de este espacio. Luego estudiamos las aplicaciones armónicas, desde un punto de vista geométrico, pues encontraremos que nuestra aplicación de Gauss es armónica en el disco de Poincaré. Esto nos permitirá construir una representación tipo Weierstrass para superficies mínimas en nuestro espacio ambiente. Finalmente, con esta representación obtendremos diferentes ejemplos de superficies mínimas en el grupo de Heisenberg.

Descripción

Palabras clave

Inmersiones, Aplicaciones armónicas, Superficies minimales, Geometría de Riemann

Citación

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced

Licencia Creative Commons

Excepto se indique lo contrario, la licencia de este artículo se describe como info:eu-repo/semantics/openAccess