On the intersection of two longest paths in k-connected graphs
No hay miniatura disponible
Fecha
2021-02-01
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Pontificia Universidad Católica del Perú
DOI
Resumen
Mostramos que cada par de caminos máximos en un grafo k-conexo con n vértices se intersecan uno al otro en por lo menos mín{n, (8k − n + 2)/5} vértices. También mostramos que en un grafo 4-conexo cada par de caminos máximos se interseca uno al otro en por lo menos cuatro vértices. Ello confirma una conjetura de Hippchen en grafos k-conexos cuando k ≤ 4 o k ≥ (n − 2)/3.
We show that every pair of longest paths in a k-connected graph on n vertices intersect each other in at least min{n, (8k − n + 2)/5} vertices. We also show that, in a 4-connected graph, every pair of longest paths intersect each other in at least four vertices. This confirms a conjecture of Hippchen for k-connected graphs when k 4 or k (n − 2)/3.
We show that every pair of longest paths in a k-connected graph on n vertices intersect each other in at least min{n, (8k − n + 2)/5} vertices. We also show that, in a 4-connected graph, every pair of longest paths intersect each other in at least four vertices. This confirms a conjecture of Hippchen for k-connected graphs when k 4 or k (n − 2)/3.
Descripción
Palabras clave
Grafo k-conexo, Camino máximo
Citación
Colecciones
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licencia Creative Commons
Excepto se indique lo contrario, la licencia de este artículo se describe como info:eu-repo/semantics/openAccess