On the intersection of two longest paths in k-connected graphs

No hay miniatura disponible

Fecha

2021-02-01

Título de la revista

ISSN de la revista

Título del volumen

Editor

Pontificia Universidad Católica del Perú

DOI

Resumen

Mostramos que cada par de caminos máximos en un grafo k-conexo con n vértices se intersecan uno al otro en por lo menos mín{n, (8k − n + 2)/5} vértices. También mostramos que en un grafo 4-conexo cada par de caminos máximos se interseca uno al otro en por lo menos cuatro vértices. Ello confirma una conjetura de Hippchen en grafos k-conexos cuando k ≤ 4 o k ≥ (n − 2)/3.
We show that every pair of longest paths in a k-connected graph on n vertices intersect each other in at least min{n, (8k − n + 2)/5} vertices. We also show that, in a 4-connected graph, every pair of longest paths intersect each other in at least four vertices. This confirms a conjecture of Hippchen for k-connected graphs when k 4 or k (n − 2)/3.

Descripción

Palabras clave

Grafo k-conexo, Camino máximo

Citación

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced

Licencia Creative Commons

Excepto se indique lo contrario, la licencia de este artículo se describe como info:eu-repo/semantics/openAccess