On the intersection of two longest paths in k-connected graphs
No Thumbnail Available
Date
2021-02-01
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Pontificia Universidad Católica del Perú
Abstract
Mostramos que cada par de caminos máximos en un grafo k-conexo con n vértices se intersecan uno al otro en por lo menos mín{n, (8k − n + 2)/5} vértices. También mostramos que en un grafo 4-conexo cada par de caminos máximos se interseca uno al otro en por lo menos cuatro vértices. Ello confirma una conjetura de Hippchen en grafos k-conexos cuando k ≤ 4 o k ≥ (n − 2)/3.
We show that every pair of longest paths in a k-connected graph on n vertices intersect each other in at least min{n, (8k − n + 2)/5} vertices. We also show that, in a 4-connected graph, every pair of longest paths intersect each other in at least four vertices. This confirms a conjecture of Hippchen for k-connected graphs when k 4 or k (n − 2)/3.
We show that every pair of longest paths in a k-connected graph on n vertices intersect each other in at least min{n, (8k − n + 2)/5} vertices. We also show that, in a 4-connected graph, every pair of longest paths intersect each other in at least four vertices. This confirms a conjecture of Hippchen for k-connected graphs when k 4 or k (n − 2)/3.
Description
Keywords
Grafo k-conexo, Camino máximo
Citation
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as info:eu-repo/semantics/openAccess