A note on a polynomial set generated by G(2xt-t2) for the choice G(u)= oF1(--; a; u)
No Thumbnail Available
Date
2001
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Pontificia Universidad Católica del Perú
Abstract
El artículo no presenta resumen
The present paper is a study of a class of polynomial set defined by means of a generating function of the form G(2xt- t²) for the choice G(u) = 0 F1(--;α;u). The paper contains some interesting results in the form of recurrence relations, generating functions, finite series of product of polynomials, hypergeometric form, relationship with Shively 's pseudo Laguerre and other polynomials, integral representation, fractional integral and Laplace transform of the polynomial.
The present paper is a study of a class of polynomial set defined by means of a generating function of the form G(2xt- t²) for the choice G(u) = 0 F1(--;α;u). The paper contains some interesting results in the form of recurrence relations, generating functions, finite series of product of polynomials, hypergeometric form, relationship with Shively 's pseudo Laguerre and other polynomials, integral representation, fractional integral and Laplace transform of the polynomial.
Description
Keywords
Polinomios, Transformadas de Laplace, Matemáticas
Citation
Collections
Endorsement
Review
Supplemented By
Referenced By
Creative Commons license
Except where otherwised noted, this item's license is described as info:eu-repo/semantics/openAccess