Desarrollo de un concreto para impresión 3D con agregado reciclado proveniente de conchas de abanico (RCA), residuos de construcción y demolición (RCD) y residuos de polietileno tereftalato (RPET)
Acceso a Texto completo
Abstract
La impresión 3D de concreto se enfrenta a desafíos significativos debido a la escasez global
de arena natural, un recurso crítico en su fabricación. Sin embargo, la disponibilidad de
Residuos de Construcción y Demolición (RCD), Residuos de Conchas de Abanico (RCA) y
Polietileno Tereftalato reciclado (RPET) brinda una oportunidad para abordar esta escasez.
Esta tesis se centra en el desarrollo y validación de una metodología de diseño de mezclas
de concreto que integra estos agregados reciclados, basándose en el modelo de Funk & Dinger
para obtener una granulometría continua ideal, con el objetivo de crear una alternativa
viable en la impresión 3D de concreto. La metodología propuesta ha sido meticulosamente
diseñada, considerando aspectos clave como la reología rotacional, para asegurar que las
mezclas resultantes sean no solo imprimibles, sino que también presenten propiedades reológicas
adecuadas. Para lograrlo, se realizaron ensayos experimentales en laboratorio, como
ensayos de extrusión, bombeabilidad, ensayos reológicos y pruebas de impresión en 3D a
mediana escala, para validar los diseños estudiados. Los resultados obtenidos demostraron
que la integración de RCD, RCA y RPET puede satisfacer los requisitos reológicos sin
comprometer la calidad constructiva del concreto. Este hallazgo no solo tiene implicaciones
prácticas inmediatas para la impresión 3D de concreto, sino que también contribuye significativamente
a la economía circular en la industria de la construcción. El impacto científico
de esta investigación es considerable, ya que proporciona una metodología replicable y sustentable.
Además, establece un precedente para futuras investigaciones, abriendo el camino
hacia la optimización de mezclas de concreto con otros tipos de agregados reciclados y la
exploración de nuevas aplicaciones en el campo de la impresión 3D de concreto. The 3D printing of concrete faces significant challenges due to the global shortage of natural
sand, a critical resource in its production.However, the availability of Construction and
DemolitionWaste (CDW), Scallop ShellWaste (SSW), and recycled Polyethylene Terephthalate
(RPET) presents an opportunity to address this shortage. This thesis focuses on the development
and validation of a concrete mix design methodology that incorporates these recycled
aggregates, based on the Funk & Dinger model to achieve an ideal continuous gradation,
with the goal of creating a viable alternative for 3D concrete printing. The proposed
methodology has been meticulously designed, considering key aspects such as rotational
rheology to ensure that the resultingmixtures are not only printable but also exhibit suitable
rheological properties. To achieve this, experimental tests were conducted in the laboratory,
including extrusion tests, pumpability assessments, rheological tests, and medium-scale 3D
printing trials, to validate the studied designs. The results demonstrated that the integration
of CDW, SSW, and RPET can meet rheological requirementswithout compromising the constructive
quality of the concrete. This finding not only has immediate practical implications
for 3D concrete printing but alsomakes a significant contribution to the circular economy in
the construction industry. The scientific impact of this research is considerable, as it provides
a replicable and sustainable methodology.Moreover, it establishes a precedent for future
research, paving the way for optimizing concrete mixtures with other types of recycled aggregates
and exploring new applications in the field of 3D concrete printing.