Gamma-Hadron separation using the temporal distribution of particle cascades at TeV energies in the SWGO experiment
Acceso a Texto completo
Abstract
Descubrir nuevas fuentes de rayos gamma de alta energía de origen galáctico (por ejemplo, en el centro galáctico o las Burbujas de Fermi) y extragaláctico (como cuásares o blazares) es de gran interés para la comunidad de física de astropartículas. Actualmente, los observatorios HAWC y LHAASO, ubicados en el hemisferio norte, utilizan detectores basados en el efecto Cherenkov en agua para detectar continuamente partículas secundarias de duchas atmosféricas iniciadas por rayos gamma primarios en la atmósfera. Dado que no existe un experimento equivalente en el hemisferio sur, el futuro observatorio de rayos gamma SWGO completará la cobertura del cielo para observatorios de alto ciclo de trabajo y campo de visión amplio. Su sitio propuesto por encima de los 4400 m estará ubicado en los Andes del Sur, con Chile, Argentina y Perú como países candidatos. El diseño de SWGO consiste en un arreglo de tanques de agua con dos núcleos circulares: el núcleo interno, alcanzando un radio de 160 m, con un 88% de área sensible y el anillo exterior, alcanzando un radio de 300 m, con un factor de llenado del 5%.
Para identificar fuentes de rayos gamma, las partículas primarias deben reconstruirse a partir de las duchas aéreas que llegan al arreglo de detectores, obteniendo su energía, dirección y tipo. Un separador gamma/hadrón describe las características de las duchas aéreas para distinguir entre rayos gamma, considerados como señal, y hadrones (es decir, rayos cósmicos) que se consideran ruido. Esta tesis propone una variable alternativa de separador gamma/hadrón para distinguir entre tipos de duchas atmosféricas utilizando la distribución de tiempo de llegada
de partículas secundarias a SWGO. Para definir la mejor nueva variable basada en el tiempo
utilizamos el software CORSIKA para simular el desarrollo de la ducha aérea en la atmósfera
hasta la llegada de las partículas secundarias al arreglo de tanques Cherenkov de agua. El
análisis se realizó utilizando las condiciones geomagnéticas del sitio candidato de Imata en
Arequipa, Perú, ubicado a 4500 metros sobre el nivel del mar. Consideramos como primarios
fotones y protones con una trayectoria vertical en el centro del arreglo en el rango de energía de
1 a 100 TeV. El parámetro de separación óptimo encontrado es el tiempo para el percentil 15%
de las partículas que llegan dentro de un anillo de 100 a 150 m. Tras el cálculo y la evaluación
de la muestra de simulación, la señal reconocida es ≳ 88% en promedio y el rechazo de fondo
es (≳ 90%). Ambos desempeños son comparables a usar la variable estándar de conteo de
muones. Discovering new sources of high energy gamma rays of galactic (e.g. in the galactic center
or the Fermi Bubbles) and extragalactic origin (such as quasars or blazars) is of great inter-
est to the astroparticle physics community. Currently the HAWC and LHAASO observatories,
located in the Northern hemisphere, use detectors based on the Cherenkov effect in water to
continuously detect secondary particles from atmospheric showers initiated by primary gamma
rays in the atmosphere. Since there is no equivalent experiment in the Southern hemisphere,
the future gamma-ray observatory SWGO will complete the sky coverage for high duty cycle
and wide field of view observatories. Its proposed site above 4400 m will be located in the
Southern Andes, with Chile, Argentina and Peru as candidate countries. The SWGO refer-
ence configuration consists of an array of water tanks with two circular cores: the inner core,
reaching 160 m radius, with 88% sensitive area and the outer ring, reaching 300 m radius, with
a 5% fill-factor. To identify gamma ray sources, primary particles need to be reconstructed
from the air showers reaching the detector array, obtaining their energy, direction and type.
A gamma/hadron separator describes the characteristics of the air showers to distinguish be-
tween gamma rays, considered as signal, and hadrons (i.e. cosmic rays) that are considered
noise. This thesis proposes an alternative gamma/hadron separator variable to distinguish be-
tween types of atmospheric showers by using the arrival time distribution of secondary particles
reaching SWGO. To define the best new time-based variable we use the CORSIKA software
to simulate the development of air showers in the atmosphere up to the arrival of secondary
particles at the array of water Cherenkov tanks. The analysis was done using the geomagnetic
conditions of the Imata candidate site in Arequipa, Perú, located at 4500 meters above sea level.
We considered as primaries photons and protons with a vertical trajectory in the center of the
array in the energy range from 1 to 100 TeV. The optimal separation parameter found is the
time for the 15% percentile of arriving particles inside a ring of 100 to 150 m. Following the
calculation and evaluation of the simulation sample, the recognized signal is ≳ 88% on aver-
age, and the background rejection is ≳ 90%. Both performances are comparable to using the
standard muon count variable.