Show simple item record

dc.contributor.advisorSakihama Uehara, Jose Luis Hideki
dc.contributor.authorCabanillas Flores, Renato
dc.date.accessioned2023-01-24T16:38:33Z
dc.date.available2023-01-24T16:38:33Z
dc.date.created2022
dc.date.issued2023-01-24
dc.identifier.urihttp://hdl.handle.net/20.500.12404/24085
dc.description.abstractLos ensayos de desgaste según la norma ASTM G-65 son realizados para determinar la resistencia al desgaste abrasivo de bajo esfuerzo de un material mediante su exposición al contacto con arena seca. Estos ensayos permiten la evaluación de recargues duros o hardfacing con la finalidad de encontrar los efectos de los elementos aleantes sobre la microestructura y la resistencia al desgaste. Por su parte, el aprendizaje automático, conocido como Machine Learning, es una técnica del campo de la inteligencia artificial que busca desarrollar modelos computacionales con la capacidad de realizar tareas de clasificación y regresión. La metodología utilizada para realizar el entrenamiento, y posterior evaluación de los modelos obtenidos, consiste en la digitalización de los registros de ensayos de desgaste ejecutados por la American Welding Society, el análisis del comportamiento de la pérdida de masa en función del porcentaje de la concentración de los elementos presentes en el depósito del recargue duro y el desarrollo de los siguientes algoritmos de modelos de aprendizaje automático: k-vecinos cercanos (KNN), red neuronal artificial (ANN) y máquina de aprendizaje extremo (ELM). Posterior al entrenamiento, se emplearon los modelos ya entrenados para calcular la pérdida de masa en probetas previamente ensayadas en el Laboratorio de Materiales de la Pontificia Universidad Católica del Perú (PUCP) y así evaluar la efectividad de los modelos en la sección de resultados. Para los modelos entrenados se identificaron las variantes con mejor efectividad en la predicción de pérdida de masa, las cuales fueron la red neuronal artificial de 3 capas entrenada en 1000 épocas, el modelo de k-vecinos cercanos con 6 vecinos y la máquina de aprendizaje extremo con 10,000 neuronas. Para la comparación con datos de ensayos realizado sen la PUCP se obtuvo un error medio absoluto de 0.086 g para ANN, 0.726 g para KNN 0.853 g para ELM; en contraste con los valores de 0.228 g, 0.321 g y 0.666 g obtenidos para los ensayos realizado por la AWS, respectivamente. De entre los 3 modelos entrenados, se identifica que la red neuronal artificial congrega la mayor cantidad de puntos cercanos a la igualdad entre el valor real de pérdida de masa y la predicción calculada mediante el modelo. Se concluye que la ANN puede predecir con éxito la pérdida de masa en función de la composición química del depósito y su dureza, alcanzando una precisión del 85.75%. Por otro lado, la ELM requiere elevados recursos computacionales para entrenarse por encima de las 500,000 neuronas, así como un análisis más profundo para evitar el sobreajuste del modelo a los datos de entrenamiento. El algoritmo KNN no calcula exitosamente la masa perdida en un ensayo de desgaste debido a que entrega valores de promedios locales para datos que no se estructuran de forma ordenada. Finalmente, los resultados alcanzados brindan validez a la aplicación de técnicas de aprendizaje automático para encontrar la pérdida de masa en ensayos de desgaste.es_ES
dc.language.isospaes_ES
dc.publisherPontificia Universidad Católica del Perúes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-sa/2.5/pe/*
dc.subjectResistencia de materialeses_ES
dc.subjectAprendizaje automático (Inteligencia artificial)es_ES
dc.subjectDesgaste mecánicoes_ES
dc.titleDesarrollo de modelo predictivo de desgaste basado en datos de ensayos según ASTM G-65 utilizando algoritmos de Machine Learninges_ES
dc.typeinfo:eu-repo/semantics/bachelorThesises_ES
thesis.degree.nameIngeniero Mecánicoes_ES
thesis.degree.levelTítulo Profesionales_ES
thesis.degree.grantorPontificia Universidad Católica del Perú. Facultad de Ciencias e Ingenieríaes_ES
thesis.degree.disciplineIngeniería Mecánicaes_ES
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#2.03.01es_ES
dc.publisher.countryPEes_ES
renati.advisor.dni40851665
renati.advisor.orcidhttps://orcid.org/0000-0003-2750-2556es_ES
renati.author.dni73139808
renati.discipline713046es_ES
renati.jurorLean Sifuentes, Paul Pedroes_ES
renati.jurorSakihama Uehara, Jose Luis Hidekies_ES
renati.jurorLavayen Farfan, Danieles_ES
renati.levelhttps://purl.org/pe-repo/renati/level#tituloProfesionales_ES
renati.typehttps://purl.org/pe-repo/renati/type#tesises_ES


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess