dc.contributor.author | Abanto-Valle, Carlos A. | |
dc.contributor.author | Garrafa-Aragón, Hernán B. | |
dc.date.issued | 2019-09-16 | |
dc.identifier.uri | http://revistas.pucp.edu.pe/index.php/economia/article/view/21103/20850 | |
dc.description.abstract | This paper extends the threshold stochastic volatility (THSV) model specification proposed in So et al. (2002) and Chen et al. (2008) by incorporating thick-tails in the mean equation innovation using the scale mixture of normal distributions (SMN). A Bayesian Markov Chain Monte Carlo algorithm is developed to estimate all the parameters and latent variables. Value-at-Risk (VaR) and Expected Shortfall (ES) forecasting via a computational Bayesian framework are considered. The MCMC-based method exploits a mixture representation of the SMN distributions. The proposed methodology is applied to daily returns of indexes from BM&F BOVESPA (BOVESPA), Buenos Aires Stock Exchange (MERVAL), Mexican Stock Exchange (MXX) and the Standar & Poors 500 (SP500). Bayesian model selection criteria reveals that there is a significant improvement in model fit for the returns of the data considered here, by using the THSV model with slash distribution over the usual normal and Student-t models. Empirical results show that the skewness can improve VaR and ES forecasting in comparison with the normal and Student-t models. | en_US |
dc.format | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Pontificia Universidad Católica del Perú. Fondo Editorial | es_ES |
dc.relation.ispartof | urn:issn:2304-4306 | |
dc.relation.ispartof | urn:issn:0254-4415 | |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0 | * |
dc.source | Economía; Volume 42 Issue 83 (2019) | es_ES |
dc.subject | MMarkov chain Monte Carlo | en_US |
dc.subject | Non linear state space models | en_US |
dc.subject | Scale mixtures of normal distributions | en_US |
dc.subject | Stochastic volatility | en_US |
dc.subject | Threshold | en_US |
dc.subject | Value-at-Risk | en_US |
dc.subject | Expected shortfall | en_US |
dc.subject | Modelos de volatilidad | es_ES |
dc.title | Threshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approach | es_ES |
dc.type | info:eu-repo/semantics/article | |
dc.type.other | Artículo | |
dc.subject.ocde | https://purl.org/pe-repo/ocde/ford#5.02.01 | |
dc.publisher.country | PE | |
dc.identifier.doi | https://doi.org/10.18800/economia.201901.002 | |