Show simple item record

dc.contributor.authorAbanto-Valle, Carlos A.
dc.contributor.authorGarrafa-Aragón, Hernán B.
dc.date.issued2019-09-16
dc.identifier.urihttp://revistas.pucp.edu.pe/index.php/economia/article/view/21103/20850
dc.description.abstractThis paper extends the threshold stochastic volatility (THSV) model specification proposed in So et al. (2002) and Chen et al. (2008) by incorporating thick-tails in the mean equation innovation using the scale mixture of normal distributions (SMN). A Bayesian Markov Chain Monte Carlo algorithm is developed to estimate all the parameters and latent variables. Value-at-Risk (VaR) and Expected Shortfall (ES) forecasting via a computational Bayesian framework are considered. The MCMC-based method exploits a mixture representation of the SMN distributions. The proposed methodology is applied to daily returns of indexes from BM&F BOVESPA (BOVESPA), Buenos Aires Stock Exchange (MERVAL), Mexican Stock Exchange (MXX) and the Standar & Poors 500 (SP500). Bayesian model selection criteria reveals that there is a significant improvement in model fit for the returns of the data considered here, by using the THSV model with slash distribution over the usual normal and Student-t models. Empirical results show that the skewness can improve VaR and ES forecasting in comparison with the normal and Student-t models.en_US
dc.formatapplication/pdf
dc.language.isoeng
dc.publisherPontificia Universidad Católica del Perú. Fondo Editoriales_ES
dc.relation.ispartofurn:issn:2304-4306
dc.relation.ispartofurn:issn:0254-4415
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by/4.0*
dc.sourceEconomía; Volume 42 Issue 83 (2019)es_ES
dc.subjectMMarkov chain Monte Carloen_US
dc.subjectNon linear state space modelsen_US
dc.subjectScale mixtures of normal distributionsen_US
dc.subjectStochastic volatilityen_US
dc.subjectThresholden_US
dc.subjectValue-at-Risken_US
dc.subjectExpected shortfallen_US
dc.subjectModelos de volatilidades_ES
dc.titleThreshold Stochastic Volatility Models with Heavy Tails: A Bayesian Approaches_ES
dc.typeinfo:eu-repo/semantics/article
dc.type.otherArtículo
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#5.02.01
dc.publisher.countryPE
dc.identifier.doihttps://doi.org/10.18800/economia.201901.002


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

info:eu-repo/semantics/openAccess
Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess