Aplicación de estrategias de asignación de activos basadas en un modelo de Markov de regímenes cambiantes
Acceso a Texto completo
Abstract
Los cambios de régimen en la economía afectan el comportamiento de los activos financieros y suponen retos para los procesos de asignación de activos. Como varios autores han señalado, el Modelo de Optimización de Media-Varianza de Markowitz, ampliamente utilizado desde su publicación en la década de los 50s, presentaba ciertas limitaciones que no fueron consideradas en sus etapas iniciales de desarrollo.
En la práctica estas limitaciones se evidenciaron ante la ocurrencia de cambios abruptos en los mercados financieros. En particular, esto sucedió durante la crisis financiera del 2007-2008, siendo los más vulnerables aquellos inversionistas que habían reducido significativamente su exposición a la liquidez para invertir en activos riesgosos. La poca liquidez del mercado impidió a los inversionistas vender sus posiciones riesgosas u obtener coberturas a _n de evitar las caídas pronunciadas de los activos. Este tipo de eventos extremos o riesgos de cola, puso en discusión los límites de la diversificación dada la naturaleza cambiante de los activos financieros y las limitaciones de una estrategia de inversión estática.
Más aún, puso en relieve la gran influencia que puede tener el entorno macroeconómico sobre los mercados financieros y su desenvolvimiento de largo plazo.
En ese sentido, desarrollos recientes plantean un proceso de optimización dinámico, que se adecúe a la naturaleza cambiante de los activos financieros y que permita incorporar las influencias macroeconómicas en los distintos regímenes.
El presente trabajo tiene tres objetivos. En primer lugar, presentar la construcción y formalización matemática del Problema Intertemporal de Asignación de Activos de un inversionista que rebalancea su portafolio de manera dinámica.
En segundo lugar, presentar el marco metodológico de un Proceso Oculto de Markov Discreto basado en regímenes cambiantes. El Proceso Oculto de Markov será utilizado para determinar los estados de la naturaleza en base a dos variables macroeconómicas: la tasa de crecimiento del PBI y la tasa de inflación.
En tercer lugar, realizar un ejercicio de aplicación enlazando la metodología del Proceso Oculto de Markov Discreto con el Problema de Asignación de Activos del inversionista. Es decir, se incorporará al proceso de optimización de portafolios, los regímenes previamente determinados mediante el Proceso Oculto de Markov. De esta manera, la estimación de las ponderaciones óptimas de los activos financieros dependerá del estado de la naturaleza prevaleciente en cada momento del tiempo. El objetivo último será encontrar una estrategia de asignación de activos que permita ajustar dinámicamente las ponderaciones de los activos financieros de acuerdo a los regímenes determinados por las variables macroeconómicas.
Los resultados del ejercicio de aplicación muestran que, en comparación a otras estrategias de inversión estáticas, la estrategia dinámica propuesta genera un mayor retorno ajustado por riesgo (mayor ratio Sharpe); ofrece mayor protección ante caídas abruptas en los mercados financieros, que suelen ocurrir en periodos de estrés; presenta un mayor retorno promedio al final del periodo de análisis y baja volatilidad, y muestra comportamientos más estables a lo largo del tiempo.