Ingeniería de Control y Automatización
URI permanente para esta colecciónhttp://54.81.141.168/handle/123456789/9092
Explorar
Ítem Texto completo enlazado Diseño de un controlador adaptivo con identificación en línea aplicado a una planta modelo de presión(Pontificia Universidad Católica del Perú, 2011-11-30) Acero Coila, Eloy Edwin; Morán Cárdenas, AntonioSe presenta el diseño del controlador adaptivo aplicado a la Planta Modelo de Presión desarrollado en base a Controladores Adaptivos de Auto-sintonización – STR con Identificación Recursiva en Línea. Este algoritmo de control está basado en el método de asignación de polos y del algoritmo de identificación recursivo de mínimos cuadrados – RLS y mínimos cuadrados extendidos RELS. El control es tal que permite que el proceso esté a una referencia deseada, manteniendo siempre la regulación deseada. Además el control es capaz de hacer frente a las perturbaciones existentes en el proceso por ser altamente no lineal. El diseño incluyó etapas de identificación, control y simulación del sistema de control, las cuales se utilizaron para hallar las soluciones a los requerimientos de funcionamiento, asimismo se realizo la implementación del controlador en MatLab – Simulink. Palabras Claves: Controladores Adaptivos de Auto-sintonización – STR. Identificación Recursiva de Mínimos Cuadrados – RLS, Identificación Recursiva de Mínimos Cuadrados Extendidos – RELS, asignación de polos.Ítem Texto completo enlazado Diseño de un sistema de control y planeamiento de trayectoria coordinado en el tiempo para múltiples robots móviles no holonómicos en presencia de obstáculos(Pontificia Universidad Católica del Perú, 2022-01-10) Dulanto Ramos, Luis Enrique; Morán Cárdenas, Antonio ManuelLa presente tesis tiene como objetivo diseñar un sistema de control y planeamiento de trayectoria coordinado para múltiples robots móviles no holonómicos en mapas con presencia de obstáculos variados. En esta se simula el control y planeamiento en modelos matemáticos de tipo bicicleta. El sistema implementado consiste de tres partes, las cuales son el planeamiento de caminos, el generador de trayectorias y el control de seguimiento de trayectorias. El planeamiento de caminos se dividió en tres partes. En la primera parte se desarrolló el planeador local para un robot no holonómico, modificando el algoritmo Hybrid A*, de manera que utilice las ecuaciones movimiento circular del móvil en vez de las cinemáticas. Este algoritmo permite al robot encontrar los caminos que lo llevan de una configuración de posición y orientación inicial a una final en mapas con obstáculos variados. En la segunda parte se agregó al planeador local el planeamiento en el tiempo, combinando a este con el algoritmo de planeamiento de caminos en intervalos seguros (SIPP), el cual permite al robot evadir obstáculos en el tiempo. Finalmente, en la tercera parte se desarrolló el planeador global usando el algoritmo de búsqueda basada en conflictos (CBS), el cual resuelve los conflictos que se presentan entre los caminos de los móviles, imponiendo restricciones en el tiempo en el movimiento de cada uno de ellos. Por otro lado, el generador de trayectorias es desarrollado en una única parte, en la cual, se plantea la función de costo a optimizar, se calcula todos los gradientes y se plantea utilizar el algoritmo de descenso de gradiente de forma desacoplada para la optimización de trayectoria de cada móvil. Mientras que el desarrollo del sistema de control de seguimiento de trayectoria se dividió en dos partes. En la primera se linealiza el modelo matemático por extensión dinámica para sistemas flatness diferencial y en la segunda parte se desarrolla el controlador LQR de cada móvil que permite seguir las trayectorias de referencia deseadas. Al término de la tesis se logra el planeamiento, generación de trayectoria y el control de seguimiento de trayectoria de hasta 10 móviles no holonómicos en mapas con obstáculos variados, evitando la colisión con los obstáculos del entorno y la colisión con otros móviles durante el planeamiento y la optimización de trayectoria. Así mismo, se verifica que el planeador es capaz de resolver conflictos en entornos propensos al atasco como mapas tipo T o H.Ítem Texto completo enlazado Dynamic and algebraic observer design for leak detection, size estimation and localization in water pipe systems(Pontificia Universidad Católica del Perú, 2023-11-06) Russmann, Julius Paul; Perez Zuñiga, Carlos GustavoEn esta tesis se aplican por primera vez métodos basados en modelos sin discretización espacial para detectar y localizar fugas en una planta piloto de transporte de fluidos. Basado en un modelo matemático que describe la dinámica de fluidos dentro de la tubería de agua mediante dos ecuaciones diferenciales parciales que son hiperbólicas, lineales, unidimensionales y acopladas, se deriva y diseña tanto un observador dinámico como algebraico. El diseño del observador dinámico combina un enfoque de Luenberger con una transformación de backstepping para demostrar la estabilidad asintótica del error del observador. Como consecuencia, el observador resulta en un sistema dinámico de dos sistemas diferenciales parciales hiperbólicos acoplados. Por el contrario, el diseño del observador algebraico aplica el método de las funciones de modulación para convertir el modelo matemático en problemas auxiliares que también son dados por ecuaciones diferenciales parciales. Los problemas auxiliares se pueden resolver fuera de línea, tal que para estimar el tamaño y la posición de la fuga en línea se tienen que resolver solamente ecuaciones algebraicas input-output. Se enfatiza que ambos esquemas de observación se derivan directamente del modelo matemático sin discretización espacial. Por lo tanto, esta tesis aborda la brecha de investigación con respecto a métodos de detección y localización de fugas que sean basados en un modelo matemático y que no requieren una discretización espacial del sistema. En simulaciones comparativas, se evalúa el desempeño de ambos observadores para una tubería de agua ejemplar en diversas condiciones de operación, por ejemplo, el tamaño de la fuga, la posición de la fuga, el caudal de entrada y el ruido de medición. Se compara la precisión de los esquemas de observación, y se verifica la capacidad en tiempo real de ambos algoritmos. Finalmente, la dinámica y el observador algebraico se utilizan para estimar el tamaño y la posición de la fuga para una planta piloto de transporte de fluidos instalada en el laboratorio de Ingeniería de Control Avanzado en la PUCP. Se revela que, al contrario de la suposición de un modelo lineal para la perdida por fricción, las pérdidas por fricción dependen cuadráticamente del caudal tal que un modelo no lineal describa con mayor exactitud la dinámica del fluido de la planta piloto. Sin embargo, se ha demostrado que para las fugas que surgen cerca de la salida de la tubería, ambos observadores estiman la posición de la fuga con desviaciones inferiores al 5% y logran la precisión deseada. Además, se ha demostrado que una extensión del observador dinámico hacia el modelo no lineal permite localizar la fuga con desviaciones inferiores al 5%, independientemente de la posición de la fuga.