Artículos

URI permanente para esta colecciónhttp://54.81.141.168/handle/123456789/124168

Explorar

Resultados de Búsqueda

Mostrando 1 - 3 de 3
  • Miniatura
    ÍtemAcceso Abierto
    Rope mesh as a seismic reinforcement for two‑storey adobe Buildings
    (2022) Tarque, Nicola; Blondet, Marcial; Vargas‑Neumann, Julio; Yallico‑Luque, Ramiro
    Throughout the world, millions of people are at risk because they live in unreinforced earthen dwellings, which have consistently shown extremely poor structural behaviour during earthquakes. Every single earthquake occurring in these areas has caused unacceptable loss of life, injuries, and property damage. Earthquakes are recurrent and construction damage is cumulative. It is urgent, therefore, to devise low-cost, easy-to-implement seismic reinforcement systems and to make them available to the actual dwellers. A group of researchers at the Pontificia Universidad Católica del Perú has been working towards that goal, especially on improving the seismic capacity of one-storey adobe dwellings. They have proposed construction methodologies for a seismic reinforcement system consisting of a mesh of nylon ropes that confines all earthen walls. This reinforcement system would control the wall displacements and prevent the overturning of wall portions that may occur due to seismic shaking. To validate the effectiveness of the nylon rope mesh reinforcement on two-storey adobe dwellings, shaking table tests were conducted on unreinforced and half-scale reinforced adobe models, simulating the actions of slight, moderate and strong seismic ground shaking. These models were designed to include the main construction features of typical adobe dwellings in the Peruvian Andes. The results of the experimental tests showed that the rope mesh reinforcement system was able to preserve the structural stability of the tested reduced-scale adobe models under strong motions, thus preventing collapse. It is expected that the proposed reinforced system would also improve the seismic performance of one and two-storey adobe dwellings, reducing in this way their inherent high seismic risk.
  • Miniatura
    ÍtemAcceso Abierto
    Nonlinear Dynamic Analysis of a Full-Scale Unreinforced Adobe Model
    (2014) Tarque, Nicola; Camata, Guido; Spacone, Enrico; Varum, Humberto; Blondet, Marcial
    This paper describes the results of a numerical study of a full-scale adobe building model tested on a shaking table. Material properties of adobe masonry were calibrated to represent the wall in-plane seismic behavior, based on a prior numerical analysis of an adobe wall carried out by the authors. The inelastic part of the constitutive model was represented by a softening curve in tension and by a hardening/softening behavior in compression; thus, the fracture energy is a key issue in the modeling process. A finite element model that relies on a homogenous continuum approach was developed in Abaqus/Explicit software. The damage evolution in the numerical simulation represented fairly well the experimental crack pattern, for in-plane and out-of-plane seismic effects. Overall, the calibrated material properties and the explicit solution scheme proved to be appropriate for simulating the seismic behavior and predicting capacity of unreinforced adobe structures subjected to seismic loading.
  • Miniatura
    ÍtemAcceso Abierto
    Numerical simulation of an adobe wall under in-plane loading
    (2014) Tarque, Nicola; Camata, Guido; Varum, Humberto; Spacone, Enrico; Blondet, Marcial
    Adobe is one of the oldest construction materials that is still used in many seismic countries, and different construction techniques are found around the world. The adobe material is characterized as a brittle material; it has acceptable compression strength but it has poor performance under tensile and shear loading conditions. Numerical modelling is an alternative approach for studying the nonlinear behaviour of masonry structures such as adobe. The lack of a comprehensive experimental database on the adobe material properties motivated the study developed here. A set of a reference material parameters for the adobe were obtained from a calibration of numerical models based on a quasi-static cyclic in-plane test on full-scale adobe wall representative of the typical Peruvian adobe constructions. The numerical modelling, within the micro and macro modelling approach, lead to a good prediction of the in-plane seismic capacity and of the damage evolution in the adobe wall considered.