Informática con mención en Ciencias de la Computación

URI permanente para esta colecciónhttp://54.81.141.168/handle/123456789/51445

Explorar

Resultados de Búsqueda

Mostrando 1 - 10 de 45
  • Ítem
    Ontologías de dominio para dar soporte al proceso de creación de diccionarios monolingües
    (Pontificia Universidad Católica del Perú, 2024-10-17) Rebaza Valdivia, Carlos Alberto; Beltrán Castañón, César Armando; Brossard Núñez, Ian Paul
    Los diccionarios han sido, durante siglos, fundamentales para el entendimiento y la preservación de las lenguas. Fueron también la última palabra para resolver muchas discusiones, actuando como autoridades definitivas en cuestiones de significado y uso correcto de las palabras. La importancia de los diccionarios radica en su capacidad para proporcionar a los lectores una referencia confiable y precisa que facilita la comunicación efectiva y el aprendizaje. Sin embargo, la creación de un diccionario es una tarea ardua y meticulosa que puede llevar décadas en completarse. Este proceso implica la recopilación exhaustiva de datos léxicos, el análisis detallado de palabras y sus múltiples significados, y la verificación de su uso en diferentes contextos. Cada nueva edición de un diccionario requiere un esfuerzo considerable para incorporar cambios en el lenguaje, incluyendo la adición de nuevas palabras, la modificación de definiciones existentes y la eliminación de términos obsoletos. Esta labor intensa asegura que los diccionarios continúen siendo recursos valiosos y relevantes en un mundo en constante evolución. La lexicografía, la disciplina dedicada a la elaboración y estudio de diccionarios, enfrenta numerosos desafíos en su práctica. Más allá del diseño de la estructura del diccionario, el lexicógrafo debe lidiar con la complejidad de la lengua, donde uno de los mayores retos es la polisemia. Las palabras con múltiples significados requieren un tratamiento cuidadoso para asegurar que las definiciones sean precisas y relevantes para el contexto en el que se utilizarán. Este proceso implica no solo identificar todos los posibles significados de una palabra, sino también determinar cuál de estos es más adecuado para el lector objetivo del diccionario. Además, el lexicógrafo debe asegurarse de que las definiciones sean claras y comprensibles, evitando ambigüedades y proporcionando ejemplos de uso que ilustren adecuadamente cada significado. Este desafío se amplifica en un entorno lingüístico dinámico donde el lenguaje evoluciona constantemente, haciendo imprescindible la utilización de herramientas avanzadas que apoyen en la toma de decisiones y en la estructuración eficiente de las entradas del diccionario. Actualmente, tecnologías como TLex y Microsoft Word brindan herramientas que se enfocan en la edición y presentación de las entradas del diccionario, orientadas a detallar las definiciones seleccionadas y mejorar la calidad de su presentación. Sin embargo, el lenguaje es dinámico y evoluciona constantemente, comportándose como un ente vivo en constante evolución que refleja cambios sociales, culturales y tecnológicos. Palabras nuevas emergen, otras caen en desuso y los significados pueden transformarse con el tiempo. Este comportamiento evolutivo del lenguaje presenta un desafío significativo para la lexicografía tradicional. La propuesta de esta tesis es tratar el corpus lexicográfico como un ente orgánico que evoluciona, integrando ontologías y folksonomías para gestionar y adaptar este dinamismo. Las ontologías proporcionan una estructura jerárquica y organizada del conocimiento, permitiendo representar de manera precisa las relaciones entre los términos. Por otro lado, las folksonomías, que son sistemas de clasificación colaborativa, permiten analizar el uso real del lenguaje de manera más flexible y adaptativa. Al apoyarse en grafos de conocimiento, es posible realizar análisis detallados y visualizaciones que ayudan a identificar tendencias, relaciones y cambios en el uso del lenguaje. Este enfoque no solo facilita la actualización y mejora continua de los diccionarios, sino que también permite ofrecer definiciones más precisas y relevantes. Herramientas como las nubes de palabras (wordclouds) pueden proporcionar al lexicógrafo valiosa información sobre las definiciones y su composición léxica. Estas herramientas visualizan la frecuencia de uso de las palabras, sugiriendo qué términos son más comunes y, por ende, más fácilmente comprendidos por los lectores. Esto permite al lexicógrafo identificar rápidamente cuáles definiciones están compuestas por palabras de uso más frecuente, facilitando la creación de entradas más accesibles y relevantes. De igual manera, si algunas palabras dentro de las definiciones pudieran estar sujetas a algún tipo de censura, esta información puede ser comunicada al lexicógrafo, permitiéndole tomar decisiones informadas sobre qué definiciones incluir en el diccionario, acorde al público objetivo. Al integrar estas herramientas en el proceso lexicográfico, se mejora la precisión y relevancia de las definiciones, asegurando que el diccionario cumpla con las expectativas y necesidades de sus lectores.
  • Ítem
    Gestión de riesgos de seguridad de información, bajo el estándar ISO/IEC 27005:2022, aplicando ontologías de dominio
    (Pontificia Universidad Católica del Perú, 2024-10-07) Santos Llanos, Daniel Elías; Brossard Núñez, Ian Paul; Beltrán Castañón, César Armando
    El proceso de gestión de riesgos, en el dominio específico de la seguridad de información, es una labor compleja pero necesaria para prevenir eventos adversos que perjudiquen a las organizaciones. Bien por obligaciones regulatorias o porque se requiere propiciar el logro de los objetivos estratégicos, la gestión de riesgos de seguridad de información (GRSI) se ha convertido en un proceso necesario y recurrente. El desarrollo de una GRSI se fundamenta en normas locales e internacionales que establecen protocolos, actividades y criterios, que establecen diversos conceptos que guardan relaciones complejas en sus términos y taxonomías. En consecuencia, se requieren especialistas experimentados para ejecutar este proceso de manera competente. Esto, a su vez, ocasiona que los resultados de este proceso estén intrínsecamente expuestos a la subjetividad e influencia de las personas que lo realizan. En esta tesis se propone e implementa un proceso de gestión de riesgos de seguridad de información, basado en una ontología de dominio, cuyo corpus está basado en los términos establecidos en los estándares ISO de seguridad de información, las normas técnicas peruanas afines y otras regulaciones internacionales relacionadas. Como resultado de la investigación aplicada se ha comprobado que es posible estructurar los conceptos y taxonomías sobre los dominios de gestión de riesgos y seguridad de la información, en una ontología integrada. Esta ha sido implementada, para guiar y automatizar, mediante una solución informática, la ejecución de una GRSI, de manera que se han mitigado la subjetividad y los errores de consistencia en los resultados de este proceso.
  • Ítem
    Construcción de recursos para la detección y clasificación automática de disfluencias producidas por tartamudez en español
    (Pontificia Universidad Católica del Perú, 2024-09-18) Cabrera Díaz, Daniel Alonso; Sobrevilla Cabezudo, Marco Antonio
    Esta tesis abordó el desarrollo de recursos computacionales para la detección y clasificación de disfluencias de tartamudez en español, cubriendo desde la recolección y anotación de audios hasta la implementación de un modelo de aprendizaje automático y estrategias de aumento de datos. Se recolectaron audios en español de cinco participantes con tartamudez, conformes a los estándares del dataset SEP-28K y con apoyo de dos especialistas en tartamudez. Aunque la naturaleza controlada de las grabaciones limitó la diversidad de disfluencias observadas, estos audios proporcionaron una base sólida para el desarrollo del modelo. El modelo presentado se basó en el modelo DisfluencyNet. Este modelo fue pre entrenado utilizando wav2vec 2.0 XLSR53 aprovechando su robusta base de datos multilingüe. El modelo demostró su capacidad para identificar y clasificar disfluencias en español, aunque su rendimiento fue inferior comparado con modelos equivalentes en inglés. Esta diferencia subraya la necesidad de más datos. Para mejorar la detección de disfluencias, se implementaron dos estrategias de aumento de datos. La primera incluyó variaciones de pitch, adición de reverberación y ruido blanco, duplicando efectivamente la cantidad de datos disponibles. Aunque esta estrategia mejoró el recall en ciertas disfluencias, los resultados en precisión y F1 fueron mixtos. La segunda estrategia, mediante clonación de voz con el modelo XTTS-v2, generó nuevos audios que emulaban disfluencias naturales, como prolongaciones y bloqueos. Aunque mejoró el recall, especialmente en rondas posteriores de aumento de datos, la precisión y F1 continuaron siendo desafiantes. Futuras investigaciones se enfocarán en expandir la anotación de disfluencias en contextos de habla espontánea y procesar los audios restantes del corpus inicial para explorar mejoras en la clasificación y detección de disfluencias. Además, se explorarán métodos avanzados de clonación de voz y otras técnicas de modificación de audios para enriquecer los datasets y mejorar los modelos de detección y clasificación de disfluencias.
  • Ítem
    Desarrollo de un algoritmo de Instance Placement en nubes privadas que soporte cargas de Alta Performance
    (Pontificia Universidad Católica del Perú, 2024-09-04) Córdova Alvarado, Rubén Francisco; Santiváñez Guarniz, César Augusto; Beltrán Castañón, César Armando
    El aumento de la capacidad computacional ha permitido el uso cada vez mayor de métodos computacionales para resolver problemas complejos de diferentes áreas, logrando tal incremento en la eficiencia y productividad que se dice que hemos empezado una nueva revolución industrial (la era del conocimiento). En esta nueva era, el uso de aplicaciones de alta, High-Performance Computing en inglés (HPC), es cada vez más común. Una forma de utilizar de manera eficiente los recursos computacionales es desplegar estas aplicaciones sobre recursos compartidos (paradigma de computo en la nube, sea esta pública o privada) en lugar de asignarlos a servidores de manera exclusiva, lo que puede resultar en tiempos muertos en el uso de alguno o todos los recursos. El problema de decidir la mejor forma de compartir recursos asignados a servidores ya sea como máquinas virtuales (VMs), contenedores, o en modo dedicado (bare metal) es llamado el problema de Instance Placement, y es fundamental para la performance de una plataforma de computo en la nube. El subproblema que se presenta cuando ya se decidió una asignación via VMs es el de VM Placement. El problema de Instance Placement es actualmente un problema abierto debido a que la solución online requiere el conocimiento no sólo de las demandas actuales y sus parámetros, sino también de las demandas futuras. Como un primer acercamiento a una solución, esta tesis busca diseñar e implementar un algoritmo de Offline Instance Placement donde el conjunto de demandas, su inicio y duración, así como sus estadísticas de uso son conocidas. El algoritmo busca asignar –de la mejor manera posible– los recursos de cómputo a instancias en una nube privada, considerando el tipo de carga a la que estas pertenecen y su nivel de servicio. Debido a que OpenStack es una de las soluciones más empleadas para nubes privadas, se toma como referencia el scheduler de OpenStack para comparar la utilidad de el algoritmo propuesto. Luego de realizar las pruebas, se obtuvo que el scheduler propuesto presenta una mayor utilidad que el scheduler de OpenStack para distintos tipos de cargas.
  • Ítem
    Evaluación de método para la detección automática de puntos de referencia (landmark detection) en imágenes en dos dimensiones de huellas plantares para el diseño de una plantilla ortopédica
    (Pontificia Universidad Católica del Perú, 2024-08-28) Donayre Gamboa, Gustavo Miguel; Fonseca Arroyo, Pablo Alejandro
    El presente trabajo de investigación evalúa la técnica de regresión de mapas de calor (heatmap regression - HR) para la detección automática de puntos de referencia (landmark detection) en imágenes médicas, específicamente en las imágenes de huellas plantares en dos dimensiones. El estudio se basa en la regresión de mapas de calor con aprendizaje profundo, una técnica que ha demostrado ser efectiva en la detección de puntos en rostros y en la estimación de la pose humana. Se propone un método automático para la detección de 8 puntos en las imágenes digitalizadas de huellas plantares que servirán de referencia para el diseño base de una plantilla ortopédica bidimensional, buscando así mejorar el proceso de fabricación de plantillas ortopédicas, que actualmente se realiza de forma manual y artesanal en la mayoría de los países de América Latina. La detección automática de estos puntos de referencia en las huellas plantares tiene el potencial de agilizar este proceso y mejorar la precisión de las plantillas. Los resultados del estudio mostraron un error absoluto promedio normalizado de 0.01017 en el conjunto de validación. Estas evaluaciones se llevaron a cabo utilizando una red convolucional U-Net, la cual consta de una ruta de codificación y compresión de imágenes para capturar el contexto, y una ruta de expansión simétrica que permite una localización precisa de puntos de interés en un tiempo razonable gracias al uso de los procesadores GPU actuales.
  • Ítem
    Predicción de la aceptación de pedidos por parte de los repartidores en la industria de entregas a domicilio utilizando machine learning
    (Pontificia Universidad Católica del Perú, 2024-08-14) Alarcon Flores, Jorge Brian; Beltrán Castañón, César Armando
    La industria de entregas a domicilio ha experimentado un auge significativo debido a la creciente demanda de los consumidores que buscan la comodidad de recibir productos y alimentos directamente en sus hogares. El avance de tecnologías y aplicaciones móviles ha impulsado el crecimiento de este mercado, permitiéndole adaptarse a las preferencias cambiantes de los consumidores [10] [19]. Sin embargo, un componente crítico en este proceso son los repartidores, quienes, tras la realización de un pedido por parte del cliente en la plataforma de la empresa, reciben notificaciones que les ofrecen una serie de pedidos sugeridos. Si aceptan, asumen la responsabilidad de recoger y entregar el pedido a los consumidores, así como la ganancia asociada, pero en ocasiones, los repartidores pueden declinar la aceptación de un pedido, lo que potencialmente conlleva a retrasos en la entrega, generando experiencias insatisfactorias para los usuarios. Este aspecto se presenta como un desafío significativo en la optimización de las operaciones de entrega a domicilio, el cual puede abordarse con soluciones de aprendizaje de máquina. En este artículo se presentan los resultados de la experimentación realizada con diversos modelos de aprendizaje de máquina, aplicándose la técnica de balanceo Smartly OverSampling con SMOTE. Los modelos se aplicaron a un conjunto de datos proporcionado por una institución latinoamericana líder en el sector de entregas a domicilio, reportando el algoritmo LightGBM, los mejores resultados con un AUC de 0.88 y un Average Precision Recall de 0.47.
  • Ítem
    Marco de trabajo para el desarrollo de proyectos de analítica de datos
    (Pontificia Universidad Católica del Perú, 2024-08-09) Olivera Cokan, César Alberto; Bello Ruiz, Alejandro Toribio; Pow Sang Portillo, José Antonio
    El desarrollo de proyectos de analítica de datos en las organizaciones requiere de procesos bien definidos para su éxito. Existen procesos estándar de analítica de datos, como CRISP-DM, que han tenido una amplia adopción en las últimas décadas. Sin embargo, mediante una búsqueda sistemática de la literatura se ha podido evidenciar que muchas de las organizaciones a menudo no aplican CRISP-DM o procesos similares, como SEMMA y KDD, tal como están, sino que muchos de ellas adaptan estos marcos de trabajo para abordar requerimientos específicos en diversos contextos de la industria. Además, según estos estudios se evidencia que un grupo considerable de empresas emplea Scrum u otros marcos de trabajo para el desarrollo de software con el fin de llevar a cabo sus proyectos de analítica de datos, lo cual no es correcto pues estos marcos de trabajo no abordan las particularidades de un ciclo de vida de una solución analítica. Si bien CRISPDM es el marco de trabajo para analítica de datos más empleado, este mismo posee un conjunto de falencias enfocadas en diversos casos de uso o procesos de negocio que ha llevado a muchas organizaciones a adaptar este marco a sus necesidades. Hasta ahora no se ha sugerido ninguna adaptación que permita abordar las falencias que los diferentes dominios en la industria poseen. Este artículo aborda la propuesta del diseño de un marco de trabajo para proyectos de analítica de datos general denominado GEN-DA (Generic Data Analytics framework por sus siglas en inglés). GEN-DA extiende y modifica CRISP-DM para solucionar las diferentes falencias encontradas en la literatura y lograr un ciclo de vida del proyecto de analítica de datos que pueda ser empleado en todos los contextos de la industria. Este marco de trabajo ha sido diseñado y evaluado de forma iterativa empleando una metodología en ciencias del diseño gracias a la participación de expertos en analítica de datos mediante el método de validación por Juicio Experto. Los resultados obtenidos son alentadores y habilita la factibilidad de emplear este marco propuesto en un entorno real, cuyos resultados, se presume, que serán satisfactorios.
  • Ítem
    Aprendizaje profundo para transcripción de textos históricos manuscritos en español
    (Pontificia Universidad Católica del Perú, 2024-07-16) Choque Dextre, Gustavo Jorge; Beltrán Castañón, Cesar Armando
    El reconocimiento de textos historicos es considerado un problema desafiante debido a los muchos factores que ´ alteran el estado de los manuscritos y la complejidad de los diferentes estilos de escritura involucrados en este tipo de documentos; en los anos recientes se han creado muchos modelos de Reconocimiento de textos manuscritos ˜ enfocados en diversos idiomas como el ingles, chino, ´ arabe y japon ´ es entre otros, sin embargo no se han ´ encontrado muchas iniciativas de reconocimiento de texto orientadas al idioma espanol debido fundamentalmente ˜ a un escasez de datasets publicos disponibles para ayudar a solucionar la problem ´ atica en dicho idioma. ´ En esta publicacion se presenta la aplicaci ´ on de t ´ ecnicas de Deep Learning basadas en una arquitectura de ´ red neuronal encoder-decoder y convoluciones compuerta Gated-CNN las cuales en los ultimos ha demostrado ´ resultados sobresalientes para resolver dicha problematica, as ´ ´ı mismo se propone la aplicacion de mecanismos de ´ Transferencia de Aprendizaje para el reconocimiento de textos historicos en espa ´ nol. Los experimentos demuestran ˜ que la aplicacion de estos m ´ etodos puede brindar resultados sobresalientes, adem ´ as la aplicaci ´ on de otras t ´ ecnicas ´ tales como Aumentacion de Datos y Modelos de Lenguaje conllevan a mejoras significativas en los resultados finales. ´ Se propone ademas el uso de un nuevo dataset de textos hist ´ oricos en espa ´ nol conformado por 1000 elementos ˜ tomados de textos historicos peruanos referentes al siglo XVIII.
  • Ítem
    Predicción de un tiro penal de fútbol basado en la estimación de postura del jugador
    (Pontificia Universidad Católica del Perú, 2024-06-24) Mauricio Salazar, Josue Angel; Alatrista Salas, Hugo
    En este artículo se presenta una metodología innovadora para predecir un tiro penal en fútbol basado en la estimación de postura del jugador que ejecuta el disparo haciendo uso de dos herramientas de visión computacional como segmentación semántica en videos y la estimación de postura 3D mediante los métodos TAM y MMPose, respectivamente. Para ello, se construyó un corpus de videos de tiros penales y se han entrenado modelos de aprendizaje profundo para predecir la región del arco a la cual llegará el disparo. Los resultados muestran que el modelo llamado CNN 3D logra una mejor precisión con respecto a los otros modelos entrenados. Además, se ha medido la influencia de distintas partes del cuerpo con respecto a la tarea de predicción, mostrando que las piernas son las partes más influyentes. Por último, implementamos una herramienta web para el entrenamiento de porteros y jugadores de fútbol en tiros penales, ofreciendo de esta manera posibles mejoras en las tácticas de un disparo de tiro penal mediante el uso de la visión computacional.
  • Ítem
    Clasificación automática de eventos en videos de fútbol utilizando redes convolucionales profundas
    (Pontificia Universidad Católica del Perú, 2024-06-21) Laboriano Galindo, Alipio; Beltrán Castañón, César Armando
    La forma en que las nuevas generaciones consumen y experimentan el deporte especialmente el fútbol, ha generado oportunidades significativas en la difusión de contenidos deportivos en plataformas no tradicionales y en formatos más reducidos. Sin embargo, recuperar información con contenido semántico de eventos deportivos presentados en formato de video no es tarea sencilla y plantea diversos retos. En videos de partidos de fútbol entre otros retos tenemos: las posiciones de las cámaras de grabación, la superposición de eventos o jugadas y la ingente cantidad de fotogramas disponibles. Para generar resúmenes de calidad y que sean interesantes para el aficionado, en esta investigación se desarrolló un sistema basado en Redes Convolucionales Profundas para clasificar automáticamente eventos o jugadas que ocurren durante un partido de fútbol. Para ello se construyó una base de datos a partir de videos de fútbol descargados de SoccerNet, la cual contiene 1,959 videoclips de 5 eventos: saques de meta, tiros de esquina, faltas cometidas, tiros libres indirectos y remates al arco. Para la experimentación se utilizó técnicas de preprocesamiento de video, una arquitectura convolucional propia y se aplicó transfer learning con modelos como ResNet50, EfficientNetb0, Visión Transformers y Video Visión Transformers. El mejor resultado se obtuvo con una EfficentNetb0 modificada en su primera capa convolucional, con la cual se obtuvo un 91% accuracy, y una precisión de 100% para los saques de meta, 92% para los tiros de esquina, 90% para las faltas cometidas, 88% para los tiros libres indirectos y 89% para los remates al arco.