Matemáticas Aplicadas con mención en Procesos Estocásticos
URI permanente para esta colecciónhttp://54.81.141.168/handle/123456789/171488
Explorar
2 resultados
Resultados de Búsqueda
Ítem Texto completo enlazado Optimización de pago de dividendos bajo una tasa de interés estocástica considerando el tiempo de ruina(Pontificia Universidad Católica del Perú, 2024-10-31) Peres Malarin, Luis Miguel; Farfán Vargas, Jonathan SamuelEn el presente trabajo de tesis estudiaremos el problema de optimización de pago de dividendos para una compañía de seguros. El excedente de la empresa y la tasa de interés de descuento son modelados por procesos de difusión. Además, en la función de valor clásica se considera un término que depende de la vida útil de la compañía. Este término representa el valor presente que una compañía gana mientras se encuentra en actividad. El objetivo principal del problema es encontrar la función de valor y una estrategia ´optima para el pago de dividendos que maximice el valor esperado de los dividendos descontados acumulados hasta el tiempo de ruina de la compañía. Para este trabajo consideraremos dos escenarios: (I) Cuando la tasa de dividendos es acotada. En este primer escenario tenemos dos subescenarios que se originan por los parámetros iniciales asociados al modelo. En el primero, encontramos la forma explícita de la función de valor y la estrategia de pago de dividendos ´optima. En este caso, se debe pagar la máxima tasa durante la vida útil de la compañía. Además, demostramos un teorema de verificación asociado a nuestro problema. En el segundo caso, encontramos la solución de la ecuación HJB asociada al modelo, la cual a través de un teorema de verificación demostramos que es efectivamente la función de valor asociada a nuestro problema. La estrategia de pago de dividendos ´optima es de tipo barrera. Es decir, se debe pagar la máxima tasa cuando el excedente de la compañía supera una cierta barrera y no se debe pagar dividendos cuando el excedente está por debajo de esta barrera. En ambos subescenarios se muestran ejemplos numéricos para diferentes valores de los parámetros iniciales de nuestro modelo. (II) Cuando la tasa de dividendos no es acotada. En este caso, encontramos la solución de la ecuación HJB asociada a nuestro modelo y a través de un teorema de verificación demostramos que la solución obtenida es efectivamente la función de valor asociada a nuestro problema. Además, encontramos de forma explícita la función de valor y la estrategia ´optima de pago de dividendos. Esta estrategia consiste en pagar en cada instante el máximo de los excesos del excedente de la compañía sobre una cierta barrera hasta dicho instante, caso contrario no se paga dividendos. Finalmente, se muestran ejemplos numéricos para poder visualizar los resultados obtenidos.Ítem Texto completo enlazado Control óptimo estocástico de una cuenta individual de capitalización en el sistema privado de pensiones del Perú(Pontificia Universidad Católica del Perú, 2022-01-12) Castañeda Medina, Ranu; Gasco Campos, Loretta Betzabe RosaEl presente trabajo estudia los efectos de los cargos administrativos en saldo y/o en flujo que aplica una administradora de fondos de pensiones sobre una cuenta de retiro individual durante el periodo de acumulación. Los cargos administrativos y el aporte mensual del contribuyente son modelados a través de funciones determinísticas, continuas y acotadas en un intervalo de tiempo [0, T] con T ∈ R; y luego, haciendo uso de la teoría de control ´optimo estocástico, se establece un problema de programación dinámica mediante el cual maximizamos la utilidad esperada de la riqueza terminal del aportante. La solución del problema antes mencionado nos permite obtener expresiones analíticas que relacionan los parámetros del modelo. Así mismo, se han propuesto funciones candidatas para cada uno de los parámetros que estamos modelando, los cuales fueron ajustados a la realidad de los sistemas pensionarios y que a su vez permitan la tractabilidad analítica del modelo. Particularmente, se abordó el caso de la comisión por saldo y de la tasa de contribución, llegando a proponer funciones que se ajustan a nuestros requerimientos teóricos y prácticos. Finalmente, para la aplicación numérica del modelo se usó como caso particular al Sistema Privado de Pensiones del Perú (SPP), tomando como punto de partida los actuales valores de las comisiones y ratios. Posteriormente, se muestra la dinámica de la comisión en saldo, ajustada a diferentes periodos de acumulación, en relación a la comisión en flujo. De esta manera, la aplicación de este trabajo en el SPP es muy ´útil como herramienta de benchmarking.