Ingeniería Electrónica

URI permanente para esta colecciónhttp://54.81.141.168/handle/123456789/9137

Explorar

Resultados de Búsqueda

Mostrando 1 - 2 de 2
  • Ítem
    Diseño e implementación de un sistema de monitoreo de parámetros eléctricos para la evaluación del rendimiento energético de sistemas fotovoltaicos conectados a red
    (Pontificia Universidad Católica del Perú, 2023-11-10) Zamudio Piscoya, Martin Alcides; Cataño Sánchez, Miguel Ángel; Palomino Töfflinger, Jan Amaru
    Los sistemas de monitoreo son una forma de evaluar el estado de las variables que resultan de interés para realizar luego un análisis o estudio correspondiente. En ese sentido, la monitorización de sistemas fotovoltaicos (FV) se ha convertido en un proceso necesario para asegurar el correcto funcionamiento de estos sistemas. Para ello, se utilizan sistemas de adquisición de datos (DAQ), los cuales permiten adquirir variables de interés. Así, resulta útil conocer tanto los parámetros eléctricos como meteorológicos que en conjunto permiten analizar el desempeño de sistemas fotovoltaicos. Como trabajo previo, se han realizado instalaciones fotovoltaicas en distintas regiones del Perú y, junto con ellas, se han instalado sistemas de monitoreo que adquieren parámetros meteorológicos de primer orden (irradiancia y temperatura del módulo FV) que afectan a la productividad de los sistemas fotovoltaicos conectados a red (SFCR). Los datos obtenidos de los DAQ son importantes para analizar el comportamiento energético de los sistemas fotovoltaicos y las anomalías que puedan generarse. Asimismo, para que estos sistemas se puedan analizar y caracterizar de manera completa, es necesario monitorizar también las variables eléctricas tanto en corriente continua (DC) como en alterna (AC). La presente tesis propone el diseño y la implementación de un sistema que adquiera parámetros eléctricos en DC y AC, y que cumpla con el estándar IEC 61724-1:2021, el cual provee requerimientos para el monitoreo y diseño de SFCR. Se tiene proyectado que el sistema opere en los diferentes climas de cinco regiones del Perú (Lima, Arequipa, Tacna, Puno y Amazonas) en conjunto con el sistema de adquisición de parámetros meteorológicos desarrollado en un trabajo previo. Los datos del nuevo sistema se monitorearán de manera continua en tiempo real y las variables serán registradas tanto de manera local en un computador así como en una plataforma en la nube que cumple con el concepto de Internet de las Cosas (IoT). El objetivo deseado es que el sistema mida correctamente de acuerdo con la normativa seguida para que pueda ser empleado en el monitoreo de diferentes sistemas fotovoltaicos conectados a red.
  • Ítem
    Diseño de un procesador criptográfico de curvas elípticas para el dispositivo WISP
    (Pontificia Universidad Católica del Perú, 2023-03-02) Mendez Cabana, Igor Ivan; Silva Cárdenas, Carlos Bernardino
    El internet de las cosas (IoT) está creciendo a un ritmo acelerado y con ello las redes de sensores están tomando una mayor importancia. Los nuevos avances se enfocan en disminuir los costos, facilitar la implementación y la escalabilidad de estas redes. En este sentido, la tecnología RFID es una alternativa que brinda mejoras en estos aspectos. Esto se debe a que al no usar baterías para la implementación de los nodos permite que sean más baratos y brinda más capacidad de conectividad. La plataforma WISP (Wireless Identification Sensing Platform) es una etiqueta RFID programable que facilita el desarrollo de nodos RFID y que ha facilitado la investigación de nuevos protocolos de comunicación y de seguridad en RFID. Por otro lado, un problema que afecta la adopción de esta tecnología es el gran incremento de ciberataques a nodos IoT en los últimos años. Esto se debe principalmente a su baja seguridad ya que con sus limitaciones en recursos de hardware y energía se dificulta desarrollar criptografías en software óptimas. En este trabajo se presenta la arquitectura de un procesador criptográfico de Curvas elípticas (ECC) de bajo consumo energético para un FPGA y que cumple con las limitaciones energéticas para ser utilizado con la etiqueta WISP. Además, el procesador propuesto soporta operaciones sobre GF(p) en curvas Weierstrass. Por otro lado, la operación de multiplicación modular se realiza utilizando el algoritmo Multiple Word Radix-2 Montgomery Multiplication (MWR2MM). De esta manera se puede implementar una arquitectura con forma de matriz sistólica lo que permite un alto nivel de paralelización y pipelining. Finalmente, se disminuyen las transiciones de señales y se eliminan los glitches que generan consumo energético innecesario. Se realizó la simulación utilizando un campo de 192 bits en el FPGA igloo AGL1000V2. Como resultado se obtuvo una latencia de 4,157,358 ciclos de reloj. Además, a una frecuencia de 6MHz se obtuvo una potencia de 5.74 mW lo cual implica que, a medio metro de distancia de la antena, la etiqueta WISP necesitará 1.6 segundos para completar una operación de multiplicación de punto.