Explorando por Autor "Bello Ruiz, Alejandro Toribio"
Mostrando 1 - 2 de 2
- Resultados por página
- Opciones de ordenación
Ítem Texto completo enlazado ExpertTI : an knowledge system for intelligent service desks using free text(Pontificia Universidad Católica del Perú, 2017-04-17) Bello Ruiz, Alejandro Toribio; Melgar, Andrés; Pizarro, Daniel; Melgar Sasieta, Héctor AndrésWhen many users consult service desks simultaneously, these typically saturate. This causes the customer attention is delayed more than usual. The service is perceived as lousy from the point of view of the customer. Increase the amount of human agents is a costly process for organizations. In addition, the amount of sta turnover in this type of service is very high, which means make frequent training. All this has motivated the design of a knowledge-based system that automatically assists both customers and human agents at the service desk. Web technology was used to enable clients to communicate with a software agent via chat. Techniques of Natural Language Processing were used in order the software agent understands the customer requests. The domain knowledge used by the software agent to understand customer requests has been codi ed in an ontology. A rule-based expert system was designed to perform the diagnostic task. This paper presents a knowledge-based system allowing client to communicate with the service desk through a chat system using free text. A software agent automatically executes the customer request. The agent software attempts to reach a conclusion using expert system and ontology. If achieved success, returns the response to the customer, otherwise the request is redirected to a human agent. Evaluations conducted with users have shown an improvement in the attention of service desks when the software developed is used. On the other hand, since the most frequent requests are handled automatically, the workload of human agents decreases considerably. The software has also been used to train new human agents which facilitates and reduces the cost of training.Ítem Texto completo enlazado Marco de trabajo para el desarrollo de proyectos de analítica de datos(Pontificia Universidad Católica del Perú, 2024-08-09) Olivera Cokan, César Alberto; Bello Ruiz, Alejandro Toribio; Pow Sang Portillo, José AntonioEl desarrollo de proyectos de analítica de datos en las organizaciones requiere de procesos bien definidos para su éxito. Existen procesos estándar de analítica de datos, como CRISP-DM, que han tenido una amplia adopción en las últimas décadas. Sin embargo, mediante una búsqueda sistemática de la literatura se ha podido evidenciar que muchas de las organizaciones a menudo no aplican CRISP-DM o procesos similares, como SEMMA y KDD, tal como están, sino que muchos de ellas adaptan estos marcos de trabajo para abordar requerimientos específicos en diversos contextos de la industria. Además, según estos estudios se evidencia que un grupo considerable de empresas emplea Scrum u otros marcos de trabajo para el desarrollo de software con el fin de llevar a cabo sus proyectos de analítica de datos, lo cual no es correcto pues estos marcos de trabajo no abordan las particularidades de un ciclo de vida de una solución analítica. Si bien CRISPDM es el marco de trabajo para analítica de datos más empleado, este mismo posee un conjunto de falencias enfocadas en diversos casos de uso o procesos de negocio que ha llevado a muchas organizaciones a adaptar este marco a sus necesidades. Hasta ahora no se ha sugerido ninguna adaptación que permita abordar las falencias que los diferentes dominios en la industria poseen. Este artículo aborda la propuesta del diseño de un marco de trabajo para proyectos de analítica de datos general denominado GEN-DA (Generic Data Analytics framework por sus siglas en inglés). GEN-DA extiende y modifica CRISP-DM para solucionar las diferentes falencias encontradas en la literatura y lograr un ciclo de vida del proyecto de analítica de datos que pueda ser empleado en todos los contextos de la industria. Este marco de trabajo ha sido diseñado y evaluado de forma iterativa empleando una metodología en ciencias del diseño gracias a la participación de expertos en analítica de datos mediante el método de validación por Juicio Experto. Los resultados obtenidos son alentadores y habilita la factibilidad de emplear este marco propuesto en un entorno real, cuyos resultados, se presume, que serán satisfactorios.