Estudio local y global de un sistema tipo Korteweg-De Vries-Burger

No hay miniatura disponible

Fecha

2013-01-30

Título de la revista

ISSN de la revista

Título del volumen

Editor

Pontificia Universidad Católica del Perú

DOI

Resumen

Las ecuaciones de Boussinesq son un tipo de ecuaciones derivadas de las ecuaciones de Euler y que modelan la propagación sensiblemente bidimensional de ondas largas de gravedad y de pequeña amplitud sobre la super cie de un canal. Un modelo de este tipo en un canal de fondo plano está dado por el sistema (P1)donde las variables adimensionales y w representan respectivamente, la de flección de la super ficie libre del líquido respecto a su posición de reposo y la velocidad horizontal del fluido a una profundidad de raíz cuadrada 2/3h; donde h es la profundidad del fluido en reposo. Dicho modelo es desde luego un sistema de ecuaciones diferenciales de Korteweg-de Vries acopladas a través de los efectos dispersivos y los términos no lineales. Por otro lado, el sistema (P1) al estar referido a un fl uido incompresible no viscoso no recoge los efectos de la viscosidad ; sin embargo al ser desacoplado podemos introducir tales efectos, resultando un sistema del tipo Korteweg-de Vries - Burger dado por (P2) En este trabajo se estudia el PVI asociado a (P2) en los espacios Hs estableciendo su buena formulación local para s > 3/2 y buena formulación global para s >= 2; en este último caso se muestra adicionalmente que la solución global decae asíntoticamente en el tiempo. Finalmente, se muestra que el PVI asociado a (P1) está bien formulado localmente como consecuencia de la buena formulación local de (P2).

Descripción

Palabras clave

Ecuaciones de Korteweg-de Vries

Citación

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced

Licencia Creative Commons

Excepto se indique lo contrario, la licencia de este artículo se describe como info:eu-repo/semantics/openAccess