Modelos de regresión con mixtura de escala Gaussiana bajo regularización bayesiana

dc.contributor.advisorValdivieso Serrano, Luis Hilmar
dc.contributor.authorUrbano Burgos, Alejandrina Margarita
dc.date.accessioned2024-09-09T17:28:33Z
dc.date.accessioned2024-09-22T09:56:49Z
dc.date.available2024-09-09T17:28:33Z
dc.date.available2024-09-22T09:56:49Z
dc.date.created2024
dc.date.issued2024-09-09
dc.description.abstractLa presente tesis busca estudiar las propiedades, estimación y aplicación a dos conjuntos de datos reales de diversas técnicas de regularización bayesiana sobre un modelo de regresión lineal múltiple con mixtura de escala Gaussiana, modelo que incluye al de una regresión logística. Estas técnicas de regresión penalizada bayesiana plantean distribuciones a priori que realizan la penalización, introduciendo el concepto de esparcidad, el cual se refiere al hecho de que solo un reducido número de variables tengan valores distintos de cero en sus coeficientes de regresión; es decir, es una especie de truncamiento de coeficientes llevados a cero que produce a su vez modelos más manejables e interpretables. De particular interés en este trabajo, fue la comparación de las técnicas de regularización bajo penalización y las derivadas de introducir las prioris de Horseshoe y de Horseshoe + a los coeficientes de regresión del modelo. Mostrando en la presente tesis, de manera explícita, cómo realizar un muestreo de Gibbs para la estimación de estos modelos, detallando no solo las distribuciones condicionales completas necesarias; sino también como es posible, mediante el uso del paquete bayesreg de R, optimizar algunas de estas propuestas de muestreo.es_ES
dc.description.abstractThis thesis aims to study the properties, estimation and application to two real data sets of various Bayesian regularization techniques on a multiple linear regression model with Gaussian scale mixture, a model that includes a logistic regression. These Bayesian penalized regression techniques pose a priori distributions that perform the penalty, introducing the concept of sparsity, which refers to the fact that only a small number of variables have non-zero values in their regression coefficients; that is, it is a kind of truncation of coefficients taken to zero that in turn produces more manageable and interpretable models. Of particular interest in this work was the comparison of the penalty regularization techniques and those derived from introducing the Horseshoe and Horseshoe + priors to the regression coefficients of the model. In this thesis, we show explicitly how to perform Gibbs sampling for the estimation of these models, detailing not only the complete conditional distributions necessary, but also how it is possible, through the use of the bayesreg package of R, to optimize some of these sampling proposals.es_ES
dc.identifier.urihttp://hdl.handle.net/20.500.12404/28832
dc.language.isospaes_ES
dc.publisherPontificia Universidad Católica del Perúes_ES
dc.publisher.countryPEes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/2.5/pe/*
dc.subjectAnálisis de regresiónes_ES
dc.subjectEstadística bayesianaes_ES
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#1.01.03es_ES
dc.titleModelos de regresión con mixtura de escala Gaussiana bajo regularización bayesianaes_ES
dc.typeinfo:eu-repo/semantics/masterThesises_ES
dc.type.otherTesis de maestría
renati.advisor.dni07958730
renati.advisor.orcidhttps://orcid.org/0000-0002-8975-7557es_ES
renati.author.dni44751540
renati.discipline542037es_ES
renati.jurorDe La Cruz Huayanay, Alexes_ES
renati.jurorValdivieso Serrano, Luis Hilmares_ES
renati.jurorBayes Rodríguez, Cristian Luises_ES
renati.levelhttps://purl.org/pe-repo/renati/level#maestroes_ES
renati.typehttps://purl.org/pe-repo/renati/type#tesises_ES
thesis.degree.disciplineEstadísticaes_ES
thesis.degree.grantorPontificia Universidad Católica del Perú. Escuela de Posgrado.es_ES
thesis.degree.levelMaestríaes_ES
thesis.degree.nameMaestro en Estadísticaes_ES

Archivos

Colecciones