Diseño, fabricación y validación de un mortero geopolimérico a base de catalizador gastado de craqueo catalítico FCC para aplicaciones de manufactura aditiva
No Thumbnail Available
Date
2024-10-31
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Pontificia Universidad Católica del Perú
Abstract
La impresión 3D es una tecnología emergente que está revolucionando la industria de la
construcción. Un gran número de proyectos de construcción con impresión 3D usa como principal
material el concreto a base de cemento Portland. No obstante, la producción del cemento es
altamente contaminante, aportando cerca del 75% de los gases de efecto invernadero de la industria
de la construcción. Por lo tanto, algunos investigadores han empleado a los geopolímeros como
conglomerante hidráulico alternativo al cemento Portland. Sin embargo, la producción de los
geopolímeros generalmente requiere una disolución alcalina que tiene un elevado costo y
significativo impacto ambiental. Considerando este escenario, esta tesis plantea usar un residuo
proveniente de la industria cervecera denominado tierra de diatomeas como activador alcalino
alternativo. Al mezclarse con el catalizador gastado de craqueo catalítico (FCC) en polvo permitirá
la producción de un mortero geopolimérico compatible con la tecnología de manufactura aditiva.
Se realizó un plan experimental abarcando (i) el procesamiento y caracterización de los materiales
(ii) la evaluación de propiedades en estado fresco de mortero geopolimérico (fluidez,
trabajabilidad, capacidad de extrusión y edificabilidad) (iii) la validación del diseño de mezcla y
(iv) la evaluación de la resistencia a la compresión del mortero geopolimérico. Se determinó que
el polvo de FCC debía pasar por un proceso de molienda de 6 horas para llegar a un tamaño
promedio de partícula de 17 μm y de esta manera mejorar su reacción con la disolución alcalina.
Se realizó el diseño de mezclas mediante ensayos de extrusión por manga pastelera en donde se
pudo observar la buena trabajabilidad de las mezclas. Se obtuvieron filamentos continuos y sin
deformaciones geométricas, los cuales son una de las principales características de la impresión
3D. Mediante la impresión de elementos en 3D se validó la dosificación imprimible con una
molaridad de NaOH en la disolución alcalina de 7, una relación disolución alcalina/materia prima
de 1.04 y una relación agregado fino/materia prima de 2.91 que cumple con las características
esperadas. También, se evaluó la resistencia a la compresión de todas las mezclas, en donde la
dosificación imprimible tuvo una resistencia promedio de 10 MPa. La presente tesis abre una
nueva línea de investigación del uso de residuos industriales para la fabricación de geopolímeros
que cumplan con los requisitos para su aplicación en manufactura aditiva y brindando una
alternativa de bajo impacto ambiental.
3D printing is an emerging technology that is revolutionizing the construction industry. A large number of 3D printed construction projects use Portland cement-based concrete as their main material. However, cement production is highly polluting, contributing about 75% of the construction industry's greenhouse gases. Therefore, some researchers have used geopolymers as an alternative hydraulic binder to Portland cement. However, the production of geopolymers generally requires alkaline dissolution, which has a high cost and significant environmental impact. Considering this scenario, this thesis proposes to use a waste from the brewing industry called diatomaceous earth as an alternative alkaline activator. When mixed with spent catalytic cracking catalyst (FCC) powder, it will allow the production of a geopolymeric mortar compatible with additive manufacturing technology. An experimental plan was carried out covering (i) the processing and characterization of the materials (ii) the evaluation of fresh state properties of geopolymer mortar (flowability, workability, extrudability and buildability) (iii) the validation of the mix design and (iv) the evaluation of the compressive strength of the geopolymer mortar. It was determined that the FCC powder should go through a 6-hour grinding process to reach an average particle size of 17 μm and thus improve its reaction with the alkaline solution. The design of mixtures was carried out by means of extrusion tests with a pastry bag, where the good workability of the mixtures was observed. Continuous filaments were obtained without geometric deformations, which are one of the main characteristics of 3D printing. By printing 3D elements, the printable dosage was validated with a NaOH molarity in the alkaline solution of 7, an alkaline solution/raw material ratio of 1.04 and a fine aggregate/raw material ratio of 2.91, which complies with the expected characteristics. Also, the compressive strength of all the mixtures was evaluated, where at the printable dosage it had an average strength of 10 MPa. This thesis opens a new line of research on the use of industrial wastes for the manufacture of geopolymers that meet the requirements for their application in additive manufacturing and provide an alternative with low environmental impact.
3D printing is an emerging technology that is revolutionizing the construction industry. A large number of 3D printed construction projects use Portland cement-based concrete as their main material. However, cement production is highly polluting, contributing about 75% of the construction industry's greenhouse gases. Therefore, some researchers have used geopolymers as an alternative hydraulic binder to Portland cement. However, the production of geopolymers generally requires alkaline dissolution, which has a high cost and significant environmental impact. Considering this scenario, this thesis proposes to use a waste from the brewing industry called diatomaceous earth as an alternative alkaline activator. When mixed with spent catalytic cracking catalyst (FCC) powder, it will allow the production of a geopolymeric mortar compatible with additive manufacturing technology. An experimental plan was carried out covering (i) the processing and characterization of the materials (ii) the evaluation of fresh state properties of geopolymer mortar (flowability, workability, extrudability and buildability) (iii) the validation of the mix design and (iv) the evaluation of the compressive strength of the geopolymer mortar. It was determined that the FCC powder should go through a 6-hour grinding process to reach an average particle size of 17 μm and thus improve its reaction with the alkaline solution. The design of mixtures was carried out by means of extrusion tests with a pastry bag, where the good workability of the mixtures was observed. Continuous filaments were obtained without geometric deformations, which are one of the main characteristics of 3D printing. By printing 3D elements, the printable dosage was validated with a NaOH molarity in the alkaline solution of 7, an alkaline solution/raw material ratio of 1.04 and a fine aggregate/raw material ratio of 2.91, which complies with the expected characteristics. Also, the compressive strength of all the mixtures was evaluated, where at the printable dosage it had an average strength of 10 MPa. This thesis opens a new line of research on the use of industrial wastes for the manufacture of geopolymers that meet the requirements for their application in additive manufacturing and provide an alternative with low environmental impact.
Description
Keywords
Mortero impregando con polímeros, Productos de residuos como materiales de construcción, Craqueo catalítico, Fabricación aditiva