Un estudio sobre cómo se manifiesta la capacidad para crear problemas sobre la función exponencial en docentes de educación superior
No hay miniatura disponible
Fecha
2018-06-18
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Pontificia Universidad Católica del Perú
DOI
Resumen
En la presente investigación, se estudia cómo se manifiesta la capacidad para crear problemas
matemáticos sobre la función exponencial en profesores de educación superior. La problemática
que justifica este trabajo tiene su origen en las dificultades que experimentan, con mucha
frecuencia, estudiantes universitarios de las especialidades de letras para comprender el
concepto de la función exponencial y, por ende, para modelar matemáticamente una situación
real con características exponenciales. En consecuencia, resulta necesario que los docentes de
educación superior desarrollen la capacidad para crear problemas sobre situaciones reales y
significativas para sus estudiantes, ya sea adaptándolos de los libros de texto o elaborándolos
desde situaciones cotidianas. Esta investigación tiene, por objetivo, profundizar en el estudio
de la capacidad del docente para crear problemas sobre la función exponencial, y se basa en el
Enfoque de creación de problemas (Malaspina, 2017), que propone el uso de las estrategias
“Episodio, problema Pre, problema Pos” (EPP) y “Situación, problema Pre, problema Pos”
(SPP), las cuales permiten crear problemas más didácticos y con mayor demanda cognitiva.
Para ello, se analizan problemas creados por docentes de matemáticas y dirigidos a estudiantes
de carreras de letras en una universidad peruana, mediante los criterios de creatividad
empleados por Malaspina (2014b): fluidez, flexibilidad y originalidad, los cuales permiten
describir la forma en que la creatividad se manifiesta. Del análisis se observa que las estrategias
de creación de problemas facilitan las modificaciones con fines didácticos, promoviendo la
fluidez de ideas e incentivando la flexibilidad de pensamiento. Se puede concluir, entonces, que
las estrategias EPP y SPP permiten mejorar la creatividad en los docentes universitarios y les
dan instrumentos de cambio para mejorar un problema dado, ya sea enfocando su sentido
didáctico o ampliando su demanda cognitiva.
In this research, it is studied how the ability to pose mathematical problems about the exponential function in higher education professors is manifested. The problem this work seeks to address has its origin in the difficulties experienced, very often, by university students of Liberal Arts programs to comprehend the concept of the exponential function and, therefore, to mathematically model a real-world situation with exponential characteristics. Consequently, it is necessary that teachers of higher education develop the ability to create problems about real and meaningful situations for their students, either by adapting them from textbooks or by elaborating them from everyday situations. This research aims to deepen in the study of the ability of the professor to create problems about the exponential function, and it is based on the Problem Posing Approach (Malaspina, 2017), which proposes the use of the strategies “Episode, Pre-problem problem, Post-problem problem” (EPP) and “Situation, Pre-problem problem, Post-problem problem” (SPP), which allow to pose more didactic problems and with greater cognitive demand. For this purpose, problems created by Mathematics professors and aimed at students of Liberal Arts programs in a Peruvian university are analyzed, through the creativity criteria used by Malaspina (2014b): fluency, flexibility and originality, which allow describing the way creativity manifests itself. From the analysis, it is observed that the problem posing strategies facilitate the modifications with didactic aims, promoting the fluency of ideas and encouraging the flexibility of thought. It can be concluded, then, that the EPP and SPP strategies allow to improve the creativity in university professors, giving them instruments of change to improve a given problem, either focusing on its didactic sense or expanding its cognitive demand.
In this research, it is studied how the ability to pose mathematical problems about the exponential function in higher education professors is manifested. The problem this work seeks to address has its origin in the difficulties experienced, very often, by university students of Liberal Arts programs to comprehend the concept of the exponential function and, therefore, to mathematically model a real-world situation with exponential characteristics. Consequently, it is necessary that teachers of higher education develop the ability to create problems about real and meaningful situations for their students, either by adapting them from textbooks or by elaborating them from everyday situations. This research aims to deepen in the study of the ability of the professor to create problems about the exponential function, and it is based on the Problem Posing Approach (Malaspina, 2017), which proposes the use of the strategies “Episode, Pre-problem problem, Post-problem problem” (EPP) and “Situation, Pre-problem problem, Post-problem problem” (SPP), which allow to pose more didactic problems and with greater cognitive demand. For this purpose, problems created by Mathematics professors and aimed at students of Liberal Arts programs in a Peruvian university are analyzed, through the creativity criteria used by Malaspina (2014b): fluency, flexibility and originality, which allow describing the way creativity manifests itself. From the analysis, it is observed that the problem posing strategies facilitate the modifications with didactic aims, promoting the fluency of ideas and encouraging the flexibility of thought. It can be concluded, then, that the EPP and SPP strategies allow to improve the creativity in university professors, giving them instruments of change to improve a given problem, either focusing on its didactic sense or expanding its cognitive demand.
Descripción
Palabras clave
Matemáticas--Estudio y enseñanza, Cálculo, Profesores universitarios--Investigaciones