Implementación de un algoritmo de aprendizaje profundo basado en eventos para el problema de predicción de movimiento bursátil

dc.contributor.advisorBeltrán Castañón, César Armando
dc.contributor.authorBustamante Arce, Jaime Diego
dc.date.accessioned2021-12-01T00:51:50Z
dc.date.available2021-12-01T00:51:50Z
dc.date.created2021
dc.date.issued2021-11-30
dc.description.abstractLa predicción de precios bursátiles, acciones e índices siempre ha sido un tema de interés en el mundo financiero, no solo por su capacidad de originar grandes rentabilidades en poco tiempo, sino también por su volatilidad y complejidad. Así, desde que los mercados bursátiles fueron concebidos diferentes investigadores en variadas áreas han tratado de “vencerlo” prediciendo su comportamiento, como el índice S&P 500 que lista la cotización de las 500 corporaciones más líquidas de la Bolsa de New York. Uno de los enfoques es el fundamentalista, que busca predecirlo de acuerdo a las noticias en los medios de las empresas listadas en la Bolsa de Valores. Desde el lado informático, diversas técnicas han venido siendo aplicadas para realizar esta predicción como estadísticas y las clásicas herramientas de aprendizaje de máquina. Sin embargo, con el creciente aumento de volumen de información, se hace necesario aplicar técnicas que consigan lidiar con esta información no estructurada. Técnicas como redes profundas recurrentes (LSTM), se han mostrado ad-hoc para el manejo de información temporal, debido a que tienen de capacidad de memorizar hechos pasados, que persisten en el tiempo. En el presente trabajo se propone una metodología y conjunto de redes neuronales profundas para la predicción de movimiento bursátil a partir de eventos y noticias corporativas. Para ello no solo se considera la contextualización de palabras, sino también sus relaciones y composición semántica, estructura e historia para la predicción del índice S&P 500. En resumen, el presente proyecto obtiene resultados exitosos puesto que sobrepasan a los del estado del arte. Así, el conjunto de modelos neuronales propuestos puede ser usados como apoyo en la decisión de inversión diaria en el índice S&P 500.es_ES
dc.identifier.urihttp://hdl.handle.net/20.500.12404/21061
dc.language.isospaes_ES
dc.publisherPontificia Universidad Católica del Perúes_ES
dc.publisher.countryPEes_ES
dc.rightsinfo:eu-repo/semantics/openAccesses_ES
dc.rights.urihttp://creativecommons.org/licenses/by-sa/2.5/pe/*
dc.subjectAprendizaje automático (Inteligencia artificial)es_ES
dc.subjectAlgoritmoses_ES
dc.subjectBolsa de valoreses_ES
dc.subject.ocdehttps://purl.org/pe-repo/ocde/ford#1.02.00es_ES
dc.titleImplementación de un algoritmo de aprendizaje profundo basado en eventos para el problema de predicción de movimiento bursátiles_ES
dc.typeinfo:eu-repo/semantics/bachelorThesises_ES
dc.type.otherTesis de licenciatura
renati.advisor.dni29561260
renati.advisor.orcidhttps://orcid.org/0000-0002-0173-4140es_ES
renati.author.dni70021286
renati.discipline612286es_ES
renati.jurorDávila Ramón, Abraham Eliseoes_ES
renati.jurorBeltrán Castañon, Cesar Armandoes_ES
renati.jurorCueva Moscoso, Ronyes_ES
renati.levelhttps://purl.org/pe-repo/renati/level#tituloProfesionales_ES
renati.typehttps://purl.org/pe-repo/renati/type#tesises_ES
thesis.degree.disciplineIngeniería Informáticaes_ES
thesis.degree.grantorPontificia Universidad Católica del Perú. Facultad de Ciencias e Ingenieríaes_ES
thesis.degree.levelTítulo Profesionales_ES
thesis.degree.nameIngeniero Informáticoes_ES

Archivos