Ionospheric echoes detection in digital ionograms using convolutional neural networks
No hay miniatura disponible
Fecha
2019-09-12
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Pontificia Universidad Católica del Perú
DOI
Resumen
An ionogram is a graph that shows the distance
that a vertically transmitted wave, of a given frequency, travels
before returning to the earth. The ionogram is shaped by making
a trace of this distance, which is called virtual height, against the
frequency of the transmitted wave. Along with the echoes of the
ionosphere, ionograms usually contain a large amount of noise
of different nature, that must be removed in order to extract
useful information. In the present work, we propose to use a
convolutional neural network model to improve the quality of
the information obtained from digital ionograms, compared to
that using image processing and machine learning techniques, in
the generation of electronic density profiles. A data set of more
than 900,000 ionograms from 5 ionospheric observation stations
is available to use.
Descripción
Palabras clave
Redes neuronales (Computación), Ionosfera, Sistemas de transmisión de datos
Citación
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licencia Creative Commons
Excepto se indique lo contrario, la licencia de este artículo se describe como info:eu-repo/semantics/openAccess