Control de un sistema de posicionamiento magnético de dos dimensiones usando aprendizaje profundo por refuerzo

No hay miniatura disponible

Fecha

2018-10-30

Título de la revista

ISSN de la revista

Título del volumen

Editor

Pontificia Universidad Católica del Perú

DOI

Resumen

Los sistemas de posicionamiento magnético son preferidos respecto a sus contrapartes mecánicas en aplicaciones que requieren posicionamiento de alta precisión como en el caso de la manufactura de circuitos integrados. Esto se debe a que los actuadores electromagnéticos no sufren los efectos de la fricción seca o desgaste mecánico. Sin embargo, estos sistemas poseen fuertes no linealidades que dificultan la tarea de control. Por otro lado, el aprendizaje por refuerzo se ha posicionado como una técnica de entrenamiento de redes neuronales prometedora que está permitiendo resolver varios problemas complejos. Por ejemplo, el aprendizaje por refuerzo fue capaz de entrenar redes neuronales que han logrado vencer al campeón mundial de Go, derrotar a varios jugadores profesionales de ajedrez y aprender a jugar varios videojuegos de la consola Atari. Asimismo, estas redes neuronales están permitiendo la manipulación de objetos por brazos robóticos, un problema que era muy difícil de resolver por medio de técnicas tradicionales. Por esta razón, el presente trabajo tiene como objetivo diseñar un controlador neuronal entrenado por refuerzo para el control de un sistema de posicionamiento magnético de dos dimensiones. Se utiliza una variación del algoritmo Deep Deterministic Policy Gradient (DDPG) para el entrenamiento del controlador neuronal. Los resultados obtenidos muestran que el controlador diseñado es capaz de alcanzar varios setpoints asignados y de realizar el seguimiento de una trayectoria dada.

Descripción

Palabras clave

Redes neuronales (Computación), Actuadores

Citación

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced

Licencia Creative Commons

Excepto se indique lo contrario, la licencia de este artículo se describe como info:eu-repo/semantics/openAccess