Estudio del desempeño de semiconductores basados en silicio como fotocátodos para la obtención de hidrógeno en procesos de electrólisis fotoasistida
No hay miniatura disponible
Fecha
2022-07-19
Título de la revista
ISSN de la revista
Título del volumen
Editor
Pontificia Universidad Católica del Perú
DOI
Resumen
El hidrógeno puede obtenerse mediante electrólisis del agua por imposición de
corriente eléctrica, lo cual implica costos relativamente altos de energía. El Perú se
encuentra en una de las regiones con mayor incidencia de radiación solar en el
mundo. Esta energía abundante y renovable puede ser empleada para asistir el
proceso de electrólisis de agua en las denominadas celdas fotoelectroquímicas (PEC).
Para ello se requiere el empleo de materiales semiconductores como electrodos. Los
semiconductores generan fotocorriente en función a sus propiedades optoelectrónicas
y estabilidad química. En esta investigación se estudia el desempeño de silicio
cristalino dopado con boro (tipo p) con distintas resistividades eléctricas como
fotocátodos para la producción de hidrógeno en una PEC. El enfoque del estudio es
evaluar la influencia de la formación de SiO2 en la producción de fotocorriente de
hidrógeno en electrolitos ácidos. Las muestras de p-Si fueron sometidos a tratamiento
de ataque químico en HF 10% para luego ser estudiados en PECs por las técnicas de
monitoreo del potencial de circuito abierto y bajo iluminación estándar AM1.5G
intermitente, producida por un simulador solar con lámpara de xenón, por las técnicas
de voltametría de barrido lineal y cronoamperometría. También se caracterizó las
propiedades como el potencial de banda plana y el dopaje mediante la técnica de
espectroscopía de impedancia electroquímica potenciodinámica y el análisis de Mott-
Schottky. Mediante los ensayos de voltametría de barrido lineal en las muestras p-Si
(100) con resistividad de 0,001-0,005 Ω cm se encontró un potencial onset de -0,30 V
vs. Ag/AgCl KCl 3M y una densidad de fotocorriente máxima de -16 mA cm-2 en la
muestra con tratamiento químico con solución de HF al 10% en comparación con -0,5
mA cm-2 en la muestra sin tratamiento químico. Asimismo, se realizó ensayos de
cronoamperometría bajo luz intermitente por 3 horas diarias durante 3 días
consecutivos. La caracterización superficial de dichas muestras por microscopía
electrónica de barrido, espectroscopía de energía dispersiva y elipsometría
confirmaron la formación de una capa de óxido mayor de 15 nm de espesor en las
muestras que estuvieron inmersas en una solución purgada con aire, es decir,
soluciones electrolito con mayor presencia de oxígeno disuelto. Se observó una
reducción promedio de densidad de fotocorriente de -15 mA cm-2 a -3 mA cm-2 al
finalizar los ensayos de largo plazo lo cual se atribuye a la formación de óxidos en la
superficie de la muestra.
Hydrogen can be obtained by electrolysis of water by applying external electric current, which implies relatively high-energy costs. Peru is located in one of the regions with the highest incidence of solar radiation in the world. This abundant and renewable energy can be used to assist the electrolysis process of water in the so-called photoelectrochemical cells (PEC). This requires the use of semiconductor materials as electrodes, which can produce photocurrent based on their optoelectronic properties and chemical stability. In this research, the performance of boron-doped (p-type) crystalline silicon with different electrical resistivities as photocathodes for hydrogen production in a PEC is studied. The focus of the study is to evaluate the influence of SiO2 formation on hydrogen photocurrent production in acidic electrolytes. The p-Si samples were subjected to chemical treatment in HF 10% and then evaluated in PECs by open circuit potential monitoring technique, and under an intermittent standard AM1.5G lighting, produced by a solar simulator with a xenon lamp, by linear sweep voltammetry, and chronoamperometry techniques. Properties such as flat-band potential and doping concentration were also characterized by electrochemical impedance spectroscopy and Mott-Schottky analysis. Using linear sweep voltammetry tests on the p-Si (100) samples with resistivity of 0.001-0.005 Ω cm it was found an onset potential of -0.30 V vs. Ag/AgCl KCl 3M. In addition, a maximum photocurrent density of -16 mA cm-2 was found with chemical treatment with HF solution at 10% in comparison to -0.5 mA cm-2 in sample without chemical treatment. Likewise, chronoamperometry tests were carried out under intermittent light for 3 hours a day for 3 consecutive days. The characterization of these samples using scanning electron microscopy, energy disperse X-ray spectroscopy, and ellipsometry confirmed the formation of a thicker oxide layer (15 nm) in the samples that were immersed in a solution purged with air, i.e., electrolyte solutions with a higher presence of dissolved oxygen. An average reduction in photocurrent density from -15 mA cm-2 to -3 mA cm-2 was attributed to oxide formation on sample surface.
Hydrogen can be obtained by electrolysis of water by applying external electric current, which implies relatively high-energy costs. Peru is located in one of the regions with the highest incidence of solar radiation in the world. This abundant and renewable energy can be used to assist the electrolysis process of water in the so-called photoelectrochemical cells (PEC). This requires the use of semiconductor materials as electrodes, which can produce photocurrent based on their optoelectronic properties and chemical stability. In this research, the performance of boron-doped (p-type) crystalline silicon with different electrical resistivities as photocathodes for hydrogen production in a PEC is studied. The focus of the study is to evaluate the influence of SiO2 formation on hydrogen photocurrent production in acidic electrolytes. The p-Si samples were subjected to chemical treatment in HF 10% and then evaluated in PECs by open circuit potential monitoring technique, and under an intermittent standard AM1.5G lighting, produced by a solar simulator with a xenon lamp, by linear sweep voltammetry, and chronoamperometry techniques. Properties such as flat-band potential and doping concentration were also characterized by electrochemical impedance spectroscopy and Mott-Schottky analysis. Using linear sweep voltammetry tests on the p-Si (100) samples with resistivity of 0.001-0.005 Ω cm it was found an onset potential of -0.30 V vs. Ag/AgCl KCl 3M. In addition, a maximum photocurrent density of -16 mA cm-2 was found with chemical treatment with HF solution at 10% in comparison to -0.5 mA cm-2 in sample without chemical treatment. Likewise, chronoamperometry tests were carried out under intermittent light for 3 hours a day for 3 consecutive days. The characterization of these samples using scanning electron microscopy, energy disperse X-ray spectroscopy, and ellipsometry confirmed the formation of a thicker oxide layer (15 nm) in the samples that were immersed in a solution purged with air, i.e., electrolyte solutions with a higher presence of dissolved oxygen. An average reduction in photocurrent density from -15 mA cm-2 to -3 mA cm-2 was attributed to oxide formation on sample surface.
Descripción
Palabras clave
Hidrógeno--Producción, Electrólisis, Semiconductores--Silicio--Desempeño
Citación
Colecciones
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licencia Creative Commons
Excepto se indique lo contrario, la licencia de este artículo se describe como info:eu-repo/semantics/openAccess