Integración estocástica y tiempo local

No hay miniatura disponible

Fecha

2018-02-20

Título de la revista

ISSN de la revista

Título del volumen

Editor

Pontificia Universidad Católica del Perú

DOI

Resumen

En el presente trabajo presentamos una construcción del movimiento browniano para lo cual probaremos en forma detallada los teoremas de extensión de Kolmogorov y el de Kolmogorov-Censot, luego hacemos una construcción detallada y autocontenida de la integral estocástica en la que los integradores son martingalas continuas cuadrado integrables. Esta es una posible extensión a la clásica integral de Itô en la cual el integrador es un movimiento browniano. En este contexto de integración estocástica enunciaremos y probaremos la fórmula de Itô y algunas de sus consecuencias. Finalmente trabajaremos con el tiempo local, la fórmula de Tanaka y estudiaremos una particular prueba.
In this investigation we show a construction of the Brownian motion, which includes detailed proofs of the Kolmogorov's extension theorem and Kolmogorov-Censot theorem. In addition, we will show a detailed construction and self-contained of the stochastic integral in wich integrators are continuous square integrable martingales. This is one of the possible extensions to classical Itô's integral in which the integrator is a Brownian motion. In this context of stochastic integration we prove an Itô's formula version. Finally, we study a relationship between local time and Tanaka's formula.

Descripción

Palabras clave

Martingalas (Matemáticas), Análisis estocástico, Procesos estocásticos

Citación

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced

Licencia Creative Commons

Excepto se indique lo contrario, la licencia de este artículo se describe como info:eu-repo/semantics/openAccess