Isomorfismo de curvas elípticas mediante el invariante j

No hay miniatura disponible

Fecha

2022-04-06

Título de la revista

ISSN de la revista

Título del volumen

Editor

Pontificia Universidad Católica del Perú

DOI

Resumen

Comenzamos con un breve recordatorio sobre algunas nociones de conjuntos algebraicos, morfismos racionales y regulares. Por otro lado, veremos que la forma de Weierstrass de una cúbica tiene asociado dos elementos importantes. El primero es el discriminante τ que nos permite decidir si una cúbica es singular o no. El segundo elemento, muy importante en este trabajo, es el invariante j, cuyo nombre se debe a que éste no varía a pesar de los cambios de coordenadas que se realicen en la curva. Este elemento cobra gran importancia pues nos ayuda a reconocer cuando dos curvas elípticas son isomorfas. Y además, también nos permite contar el número de automorfismos sobre una curva elíptica dada.
We start with a brief reminder on some notions of algebraic sets, rational and regular maps. On the other hand, we will see that the Weierstrass form of a cubic has two important elements associated to it. The first is the discriminant τ that allows us to decide whether a cubic is singular or not. The second element, very important in this work, is the j invariant, whose name is due to the fact that it does not vary despite the changes in coordinates that are made in the curve. This element is crutial because it helps us to recognize when two elliptic curves are isomorphic. And in addition, it also allows us to count the number of automorphisms on a given elliptic curve.

Descripción

Palabras clave

Isomorfismo (Matemáticas), Curvas elípticas, Invariantes

Citación

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced

Licencia Creative Commons

Excepto se indique lo contrario, la licencia de este artículo se describe como info:eu-repo/semantics/openAccess