Curvatura y fibrados principales sobre el círculo (Curvature and principal S 1 -bundles)
No hay miniatura disponible
Fecha
2018-10-04
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Pontificia Universidad Católica del Perú
DOI
Resumen
The aim of this thesis is to study in detail the work of S. Kobayashi on the
Riemannian geometry on principal S1-bundles. To be more precise, we explain
how to obtain metrics with constant scalar curvature on these bundles. The
method that we use is based in [18].
The basic idea behind Kobayashi’s construction is to slightly deform the
Hopf fibration S1 ‹→ S2n+1 −→ CPn in a such a way that the corresponding
sectional curvatures are not far from the produced by the standard metrics
on the sphere and the complex projective space on the Hopf fibration. This
deformations can be controlled applying the notions of Riemaniann and
Kahlerian pinching (see Chapter 3).
Furthermore, thanks to a technique developed by Hatakeyama in [14], it
is possible to obtain less generic metrics but with a larger set of symmetries
on the total space: Sasaki metrics. Actually, If one chooses as a base space a
K¨ahler-Einstein manifold with positive scalar curvature one can obtain a
Sasaki-Einstein metric.
Descripción
Palabras clave
Geometría de Riemann, Grupos de Lie, Variedades (Matemáticas)
Citación
Colecciones
item.page.endorsement
item.page.review
item.page.supplemented
item.page.referenced
Licencia Creative Commons
Excepto se indique lo contrario, la licencia de este artículo se describe como info:eu-repo/semantics/openAccess