Development of a BCI based on real-time neural source localization
Cargando...
Fecha
Autores
Título de la revista
ISSN de la revista
Título del volumen
Editor
Pontificia Universidad Católica del Perú
Acceso al texto completo solo para la Comunidad PUCP
Resumen
Brain-Computer-Interfaces (BCIs) provide a novel way of communication by interpreting
different types of brain states. This principle of reading minds makes BCIs a
challenging but at the same time fascinating topic among the different disciplines of
electrophysiology and biomedical-signal-processing.
This work describes the development of a non-invasive BCI approach using steadystate-
visual-evoked-potentials (SSVEP) as a mental strategy. SSVEP based BCIs require
an external visual stimulation, which in this work is transmitted by a LCD-screen.
Consequently, a visual reactive BCI is integrated as a plug-in into the open source
project MNE-CPP, which provides an extensive library for brain monitoring and processing.
MNE-Scan, as a standalone software from MNE-CPP, contains the necessary
real-time source localization and is used as a framework for the BCI. Moreover, an
expansion with a screen keyboard device shows the BCI’s practicability.
The work’s result delivers a functioning SSVEP BCI approach with an average detection
accuracy of 86 %. However, it is shown, that a transition from a BCI on sensor
level to a BCI on source level is challenging and requires a certain pre-development,
whereby a first approach of the BCI only was realized on sensor level in this work.