Development of a BCI based on real-time neural source localization

Cargando...
Miniatura

Título de la revista

ISSN de la revista

Título del volumen

Editor

Pontificia Universidad Católica del Perú

Acceso al texto completo solo para la Comunidad PUCP

Resumen

Brain-Computer-Interfaces (BCIs) provide a novel way of communication by interpreting different types of brain states. This principle of reading minds makes BCIs a challenging but at the same time fascinating topic among the different disciplines of electrophysiology and biomedical-signal-processing. This work describes the development of a non-invasive BCI approach using steadystate- visual-evoked-potentials (SSVEP) as a mental strategy. SSVEP based BCIs require an external visual stimulation, which in this work is transmitted by a LCD-screen. Consequently, a visual reactive BCI is integrated as a plug-in into the open source project MNE-CPP, which provides an extensive library for brain monitoring and processing. MNE-Scan, as a standalone software from MNE-CPP, contains the necessary real-time source localization and is used as a framework for the BCI. Moreover, an expansion with a screen keyboard device shows the BCI’s practicability. The work’s result delivers a functioning SSVEP BCI approach with an average detection accuracy of 86 %. However, it is shown, that a transition from a BCI on sensor level to a BCI on source level is challenging and requires a certain pre-development, whereby a first approach of the BCI only was realized on sensor level in this work.

Descripción

Citación

DOI

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced