dc.contributor.author | Trujillo Córdova, Christian Moisés | |
dc.date.accessioned | 2024-04-25T17:57:50Z | |
dc.date.available | 2024-04-25T17:57:50Z | |
dc.date.created | 2024 | |
dc.date.issued | 2024-04-17 | |
dc.identifier.uri | https://revistas.pucp.edu.pe/index.php/Kawsaypacha/article/view/27539/26360 | |
dc.identifier.uri | https://repositorio.pucp.edu.pe/index/handle/123456789/199387 | |
dc.description.abstract | The environmental crisis due to climate change has forced many States to direct efforts towards environmental transition to reduce the probability of occurrence of a situation with a negative impact on their population or environment. Peru is no exception. In this sense, the need arises to identify and categorize its districts according to a certain socio-environmental risk. Faced with this challenge, a multistage quantitative methodology was developed and implemented, which made use of both machine learning (supervised and unsupervised) and spatial econometrics. The results of this methodology, visualized through emerging risk indixes, evidenced the existence of 165 districts considered socio-environmental risk zones (SERZ, in Spanish known as ZRS), mostly located in the coastal strip. Finally, it is concluded that the pattern and replicability of urban development model in Peru is currently not coherent with efforts towards environmental conservation and preservation. | en_US |
dc.description.abstract | La crisis ambiental por el cambio climático ha obligado a muchos Estados a dirigir esfuerzos hacia la transición medioambiental para reducir la probabilidad de ocurrencia de una situación con un impacto negativo sobre su población o medioambiente. El Perú no es la excepción. En tal sentido, surge la necesidad de identificar y categorizar sus distritos según un determinado riesgo socioambiental. Ante tal reto, se construyó e implementó una metodología cuantitativa multietápica, la cual hizo uso tanto del aprendizaje automatizado (supervisado y no supervisado) como de la econometría espacial. Los resultados de la metodología, visualizados a través de índices de riesgo emergentes, evidenciaron la existencia de 165 distritos considerados zonas con riesgo socioambiental (ZRS), ubicados en su mayoría en la franja costera. Finalmente, se concluye que el patrón y replicabilidad del modelo de desarrollo urbanístico en el Perú actualmente no es coherente con los esfuerzos de conservación y preservación del medioambiente. | es_ES |
dc.format | application/pdf | |
dc.language.iso | spa | |
dc.publisher | Pontificia Universidad Católica del Perú | es_ES |
dc.relation.ispartof | urn:issn:2709-3689 | |
dc.relation.ispartof | urn:issn:2523-2894 | |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0 | * |
dc.source | Revista Kawsaypacha: Sociedad y Medio Ambiente; Núm. 13 (2024) | es_ES |
dc.subject | Risk society | en_US |
dc.subject | Sustainable development | en_US |
dc.subject | Socio-environmental vulnerability | en_US |
dc.subject | Socio-environmental risk | en_US |
dc.subject | Machine learning | en_US |
dc.subject | Peru | en_US |
dc.subject | Sociedad del riesgo | es_ES |
dc.subject | Desarrollo sostenible | es_ES |
dc.subject | Vulnerabilidad socioambiental | es_ES |
dc.subject | Riesgo socioambiental | es_ES |
dc.subject | Aprendizaje automatizado | es_ES |
dc.subject | Perú | es_ES |
dc.title | Riesgo socioambiental en el Perú: identificación, caracterización y categorización de 1874 distritos al 2019, usando aprendizaje automatizado y econometría espacial | es_ES |
dc.title.alternative | Socio-environmental risk in Peru: Identification, characterization, and categorization of 1874 districts in 2019, using machine learning and spatial econometrics | en_US |
dc.type | info:eu-repo/semantics/article | |
dc.type.other | Artículo | |
dc.subject.ocde | https://purl.org/pe-repo/ocde/ford#2.07.01 | |
dc.publisher.country | PE | |
dc.identifier.doi | https://doi.org/10.18800/kawsaypacha.202401.A007 | |