Textures and composition of hydrothermal tourmaline in the Chacaltaya-Kellhuani-Milluni district, La Paz, Bolivia
Acceso a Texto completo
Abstract
Los minerales pertenecientes al supergrupo de la turmalina son muy útiles para registrar las
condiciones fisicoquímicas de su cristalización y rastrear los procesos geológicos asociados a
la formación de depósitos minerales. Este estudio presenta nuevos resultados sobre la
petrografía y geoquímica de turmalina en el distrito Triásico de Chacaltaya-Kellhuani-Milluni
(oeste de Bolivia), ubicado en el segmento norte de la Cordillera Real dentro del Cinturón
Estannífero de los Andes Centrales. El área de estudio se encuentra alrededor del stock
granítico de Chacaltaya, aproximadamente 5 km al sur del granito de Huayna-Potosí. En este
distrito, la mineralización hidrotermal está asociada a greisen, brechas y vetas. Se distinguen
tres tipos principales de turmalina hidrotermal, de acuerdo a la petrografía: i) Tur-1, que
presenta un color naranja y se manifiesta como cristales esqueléticos dispersos o como
reemplazamiento pseudomórfico de cristales primarios de feldespato potásico en el granito
greisenizado de Chacaltaya, como cristales euhedrales a subhedrales diseminados que a
menudo forman agregados radiales en el greisen, y como fragmentos de cristales en brechas
cementadas por turmalina; ii) Tur-2, que se presenta como cristales aciculares muy finos de
color verde oscuro que componen el cemento de las brechas; y iii) Tur-3, que forma cristales
elongados subhedrales de color verde con tonalidades marrones con zonación oscilatoria dentro
de las vetas y cristales anhedrales muy finos en el halo de las vetas. Tanto Tur-2 como Tur-3
muestran evidencia textural de co-cristalización con casiterita tanto en brechas hidrotermales
como en vetas. Los tres tipos petrográficos pertenecen al grupo de las turmalinas alcalinas y se
caracterizan por ser ricas en Fe, en su mayoría cercanas a la composición del chorlo,
extendiéndose en parte a los campos composicionales de la foitita y dravita. La superposición
composicional de los tres tipos petrográficos de turmalina sugiere un continuo en la evolución
del fluido hidrotermal que reflejaría un enfriamiento progresivo del sistema desde Tur-1 a Tur3,
lo que finalmente habría conducido a la cristalización de casiterita coetáneamente a la
cristalización de Tur-2 y Tur-3. Minerals of the tourmaline supergroup are useful to decipher the physicochemical conditions
of its crystallization and to trace geologic processes associated with the formation of ore
deposits. This study presents new results on the petrography and geochemistry of tourmaline
from the Triassic Chacaltaya-Kellhuani-Milluni district (western Bolivia), located in the
northern segment of the Cordillera Real within the Central Andean tin belt. The study area lies
around the Chacaltaya granitic stock about 5 km south of the Huayna-Potosí granite. Here,
hydrothermal mineralization is associated with greisen, breccia, and veins. Three main
petrographic types of hydrothermal tourmaline are distinguished: i) Tur-1, which is orange in
color and occurs as scattered skeletal crystals or pseudomorphic replacement of primary Kfeldspar
in the greisenized Chacaltaya granite, as disseminated euhedral to subhedral crystals
mostly forming radial aggregates in greisen, and as crystal fragments in tourmaline-cemented
breccias; ii) Tur-2, which appears as very fine acicular grains with a dark-green color
composing the cement of breccias; and iii) Tur-3, which forms elongated green-brownish
subhedral, oscillatory-zoned crystals within veins, and anhedral, very fine-grained crystals in
the halos of veins. Both Tur-2 and Tur-3 show textural evidence of co-crystallization with
cassiterite in both hydrothermal breccias and veins. The three petrographic types of tourmaline
belong to the alkali group and are characterized by Fe-rich compositions, in majority close to
the schorl endmember, and partly extending into the compositional fields of foitite and dravite.
Overlapping tourmaline compositions suggest a progressive cooling of the ore-forming system
from Tur-1 to Tur-3, eventually leading to cassiterite deposition during the crystallization of
Tur-2 and Tur-3.