dc.contributor.advisor | Villegas Castillo, Ernesto Cristopher | |
dc.contributor.author | Freidenson Bejar, David Steven | |
dc.date.accessioned | 2023-05-23T20:35:03Z | |
dc.date.available | 2023-05-23T20:35:03Z | |
dc.date.created | 2023 | |
dc.date.issued | 2023-05-23 | |
dc.identifier.uri | http://hdl.handle.net/20.500.12404/25017 | |
dc.description.abstract | La inferencia de Redes Neuronales Profundas (o DNNs, por sus siglas en inglés, Deep
Neural Networks) se ha vuelto cada vez más demandante en términos de almacenamiento de
memoria, complejidad computacional y consumo de energía. Desarrollar hardware especializado
en DNNs puede ser un proceso tedioso, que se alarga aún más si se considera el tiempo requerido
en escribir software para ello. Así, esta tesis consiste en la validación del acelerador de hardware
de redes neuronales NVDLA (por sus siglas en inglés, Nvidia Deep Learning Accelerator)
utilizando un ambiente de co-simulación basado en su plataforma híbrida: un CPU implementado
como Prototipo Virtual (PV), basado en el Quick Emulator (QEMU), y el modelo de hardware en
RTL del NVDLA dentro de un FPGA. Para ello, la arquitectura más portátil del NVDLA nv_small
es configurada en el FPGA de una instancia F1 del servicio E2C AWS. Para complementar el
sistema, el PV del NVDLA es usado, consistiendo de un CPU Arm emulado con QEMU,
ejecutando el sistema operativo Linux y el software runtime del NVDLA, dentro de una capa de
SystemC/TLM conectada al FPGA de la instancia F1 a través de un puerto PCIe. Una vez que la
plataforma híbrida de co-simulación está configurada, se ejecutan regresiones de pruebas de
hardware en la implementación en el FPGA para revisar la propia funcionalidad e integridad de
los bloques que componen al NVDLA. Luego, se ejecutan pruebas de sanidad de software en el
PV para confirmar la configuración correcta de todo el sistema integrado. Finalmente, la DNN
AlexNet es ejecutada. Los resultados muestran la propia funcionalidad del hardware y del PV, y
que la red AlexNet se ejecutó exitosamente en el ambiente de co-simulación, tomando
aproximadamente 112 minutos. | es_ES |
dc.description.abstract | Deep neural network (DNN) inference has become increasingly demanding over the years
in terms of memory storage, computational complexity, and energy consumption. Developing
hardware targeting DNNs can be a lengthy process, which only grows if considered the time of
writing software for it. Therefore, this thesis consists of the validation of the NVDLA deep learning
hardware accelerator (NVDLA) using a co-simulation environment based on its hybrid platform:
a CPU implemented as a Virtual Prototype (VP) based on Quick Emulator (QEMU) and the
NVDLA RTL hardware model on a FPGA. For this, the more portable nv_small architecture of
the NVDLA is configured into the FPGA of a F1 instance from the EC2 AWS service. To
complement the system, the VP of the NVDLA is used, consisting of an Arm CPU emulated with
QEMU running a Linux OS and the NVDLA runtime software, inside a SystemC/TLM wrapper
connected to the F1 instance FPGA through a PCI express port. Once the hybrid co-simulation
platform is set up, hardware regression tests are run on the FPGA implementation in order to check
proper functionality and integrity of the NVDLA component blocks, sanity software tests are run
on the VP to check the correct setup of the whole stack, and finally the AlexNet DNN is executed.
The results showed proper hardware and VP functionality, and the AlexNet execution in the cosimulation
environment was successful, taking approximately 112 minutes. | es_ES |
dc.language.iso | spa | es_ES |
dc.publisher | Pontificia Universidad Católica del Perú | es_ES |
dc.rights | info:eu-repo/semantics/openAccess | es_ES |
dc.rights.uri | http://creativecommons.org/licenses/by/2.5/pe/ | * |
dc.subject | Redes neuronales (Computación) | es_ES |
dc.subject | Software de aplicación | es_ES |
dc.subject | Simulación | es_ES |
dc.title | Validation of the NVDLA architecture using its aws virtual prototype-FPGA co-simulation platform | es_ES |
dc.type | info:eu-repo/semantics/bachelorThesis | es_ES |
thesis.degree.name | Ingeniero Electrónico | es_ES |
thesis.degree.level | Título Profesional | es_ES |
thesis.degree.grantor | Pontificia Universidad Católica del Perú. Facultad de Ciencias e Ingeniería | es_ES |
thesis.degree.discipline | Ingeniería Electrónica | es_ES |
dc.type.other | Tesis de licenciatura | |
dc.subject.ocde | https://purl.org/pe-repo/ocde/ford#2.02.01 | es_ES |
dc.publisher.country | PE | es_ES |
renati.advisor.dni | 45484048 | |
renati.advisor.orcid | https://orcid.org/0009-0005-8586-512X | es_ES |
renati.author.dni | 75767926 | |
renati.discipline | 712026 | es_ES |
renati.juror | Silva Cardenas, Carlos Bernardino | es_ES |
renati.juror | Villegas Castillo, Ernesto Cristopher | es_ES |
renati.juror | Raffo Jara, Mario Andres | es_ES |
renati.level | https://purl.org/pe-repo/renati/level#tituloProfesional | es_ES |
renati.type | https://purl.org/pe-repo/renati/type#tesis | es_ES |