Show simple item record

dc.contributor.advisorVásquez Rodríguez, Desiderio Augusto
dc.contributor.authorQuenta Raygada, Johann Sebastián
dc.description.abstractBuoyancy-driven convection is a phenomenon that appears in a wide range of natural processes, from atmospheric and oceanic flows to the Earth’s core inner dynamics. In particular, convective flows are ubiquitous in systems of chemical substances reacting at an interface known as a reaction front. Autocatalytic reaction fronts allow for different types of instabilities due to gradients in chemical composition and the exothermicity of the reaction. In order to study the effects of thermal gradients in such systems, we develop a model for thin-front propagation in two-dimensional tubes. Temperature and front evolution are coupled to two different descriptions of the system’s hydrodynamics: Darcy’s law and the Navier-Stokes equations for viscous flows. We study the stability of the convectionless flat front by carrying out a linear stability analysis. The regimes for which convection arises will depend on a control parameter, called the thermal Rayleigh number, which measures the strength of thermal gradients in the system. We vary this parameter between positive and negative values and analyze its effects on the stability of the fronts.es_ES
dc.publisherPontificia Universidad Católica del Perúes_ES
dc.rightsAtribución 2.5 Perú*
dc.subjectDinámica de fluidoses_ES
dc.subjectFrentes químicoses_ES
dc.subjectReacciones químicases_ES
dc.titleAnálisis de estabilidad de frentes químicos en reacciones exotérmicases_ES
dc.typeinfo:eu-repo/semantics/bachelorThesises_ES en Ciencias con mención en Físicaes_ES Universidad Católica del Perú. Facultad de Ciencias e Ingenieríaes_ES con mención en Físicaes_ES
dc.type.otherTesis de grado

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, this item's license is described as info:eu-repo/semantics/openAccess