Jointly modelling of cluster dependent pro les of fractional and binary variables from a Bayesian point of view
Acceso a Texto completo
Abstract
En la presente tesis se proponen modelos de clasificación basados en regresiones beta inflacionadas cero-uno con efectos mixtos para modelar perfiles longitudinales de variables fraccionarias mixtas y variables binarias de forma conjunta con formación de clústeres. Las distintas parametrizaciones de los modelos propuestos permiten modelar distintos efectos, como modelar directamente la media marginal a través de covariables e interpretar fácilmente su efecto sobre ella o modelar la media condicional y las probabilidades de inflación de forma separada. Además, se forman clústeres de grupos de individuos con perfiles longitudinales similares a través de una variable latente, asumiendo que las variables respuesta siguen un modelo de mixtura finita. Debido a la complejidad de los modelos, los parámetros se estiman desde un punto de vista bayesiano, a partir de simulaciones MCMC utilizando el software JAGS en R. Se prueban los modelos propuestos sobre diferentes bases de datos simulados
para medir el desempeño de los mismos y se comparan con otros modelos a fin de verificar cual ajusta mejor los perfiles longitudinales de variables fraccionarias mixtas y variables binarias. Por último, se aplican los modelos propuestos a datos reales de un banco peruano, con información del ratio de uso de tarjetas de crédito en el periodo de un año, estado de default del cliente y otras covariables correspondientes al cliente poseedor de la tarjeta, con el objetivo de obtener clústeres de individuos con similar ratio de uso de tarjeta de crédito y relacionarlos con la probabilidad de caer en default que presenta cada grupo. The following thesis proposes classi cation models that consist of jointly tting longitudinal
pro les of mixed fractional and binary variables modelled by zero-one beta in
ated mixed
regressions with cluster formation. The distinct proposed parametrizations allow di erent effects
to be modelled, such as modelling the marginal mean directly through independent
variables and easily interpret its e ect on it or modelling the conditional mean and the in-
ation probabilities separately. In addition, individuals with similar fractional longitudinal
pro les are grouped into a cluster through a latent variable, assuming that the response variables
follow a nite mixture model. Due to the complexity of the models, the parameters are
estimated from a Bayesian point of view by simulating a MCMC using JAGS software in R.
The proposed models are tted in various simulated datasets and are compared against other
models to measure performance in tting fractional longitudinal pro les and binary variables.
Finally, an application on real data is conducted, consisting on longitudinal information of
credit card utilization ratio and default status as dependants variables and covariates corresponding
to client information, aiming to obtain clusters of clients with similar behaviour in
evolution of credit card utilization and relate them to their probability of default.