El caso 0.999...=1 en didáctica de las matemáticas : un estado del arte desde el análisis no-estándar
Acceso a Texto completo
Abstract
El análisis no-estándar es una formalización rigurosa del cálculo de Leibniz en la que se
definen conceptos clave del cálculo mediante infinitesimales, entre otras nociones. Se trata
de un análisis menos difundido que el análisis estándar que usualmente se enseña y que
está basado en definiciones epsilon-delta. En ausencia de supuestos del análisis estándar,
el símbolo 0.999... es ambiguo y es factible hacer una lectura no-estándar del mismo en
donde 0.999...<1. Se postula que en investigaciones realizadas sobre el caso 0.999...=1
los estudiantes pueden no estar familiarizados con los supuestos del análisis estándar
necesarios para hacer una lectura estándar de la igualdad 0.999...=1. En ausencia de esos
supuestos se hace posible que algunos estudiantes hagan una lectura a partir de
concepciones distintas al análisis estándar y próximas al análisis no-estándar, de modo
que su rechazo a la igualdad 0.999...=1 podría tener justificación. Esta posibilidad hace
necesario un estado del arte, entendido como una investigación con base documental de
carácter crítico-interpretativo, en donde se revise investigaciones previas sobre el caso
0.999...=1 tomando de referente el análisis no-estándar. Lo que se busca es evidenciar
limitaciones, tanto en los análisis de las concepciones de los estudiantes -ofreciendo
análisis alternativos dentro de lo posible- como en los procedimientos empleados para
promover la aceptación de la igualdad 0.999...=1. Esto contribuiría a comprender la
resistencia que se observa en algunos estudiantes a la igualdad aludida y la ineficacia de
algunos procedimientos utilizados para enseñarla. Los resultados muestran la presencia de
concepciones similares a las no-estándar en participantes de investigaciones previas a lo
largo de varias décadas. También se muestra cómo algunos de los procedimientos
utilizados para promover la aceptación de la igualdad 0.999...=1 pueden perder eficacia al
ser sujetos a una lectura no-estándar. Se postula la necesidad de considerar las
implicancias del análisis no-estándar en futuras investigaciones. Nonstandard Analysis is a rigorous formalization of Leibniz’s calculus in which key calculus
concepts are defined by means of infinitesimals, among other notions. It is a less known
analysis than the Standard Analysis usually taught, based on epsilon-delta definitions. In
the absence of presuppositions from Standard Analysis the symbol 0.999… is ambiguous
and it is feasible to do a nonstandard interpretation of it in which 0.999...<1. It is postulated
that in research on the case of 0.999...=1 students may not be familiarized with
presuppositions of Standard Analysis needed to do a standard interpretation of the equality
0.999...=1. In the absence of such presuppositions it is possible for some students to make
an interpretation based on conceptions different from Standard Analysis and that are close
to Nonstandard Analysis, making justifiable their rejection of the equality 0.999...=1. This
possibility makes it necessary to conduct a state of the art, understood as a documentbased
investigation of critical and interpretive character, in which previous research on the
case of 0.999...=1 is revised, taking Nonstandard Analysis as a reference. The aim is to
pinpoint limitations in the analysis of student conceptions -offering alternative analysis when
possible- and in procedures employed to promote acceptance of the equality 0.999...=1.
This would contribute to an understanding of the resistance observed in some students to
said equality, and the inefficacy of certain procedures used to teach it. Results show the
presence of conceptions similar to nonstandard ones in participants of previous research
throughout the decades. It is also shown how some procedures used to promote
acceptance of the equality 0.999...=1 may lose efficacy when submitted to a nonstandard
interpretation. The necessity to consider the implications of Nonstandard Analysis in future
research is postulated.