Elaboración de un Sistema de Recomendación de Publicaciones Científicas Nacionales de Acceso Abierto para los investigadores calificados del SINACYT
Acceso a Texto completo
Abstract
Actualmente existe un crecimiento sostenido sobre la producción científica mundial. Esta producción científica es preservada a través de repositorios de acceso abierto digitales, los cuales se crean como herramientas de apoyo para el desarrollo de producción científica. Sin embargo, existen deficiencias en la funcionalidad de los mismos como herramientas de apoyo para el aumento de la visibilidad, uso e impacto de la producción científica que albergan.
El Perú, no es ajeno al crecimiento de la producción científica mundial. Con el avance del mismo, se implementaron nuevas plataformas (ALICIA y DINA) de difusión y promoción del intercambio de información entre las distintas instituciones y universidades locales. No obstante, estas plataformas se muestran como plataformas aisladas dentro del sistema científico-investigador, ya que no se encuentran integradas con las herramientas y procesos de los investigadores.
El objetivo de este Proyecto es el de presentar una alternativa de solución para la resolución del problema de carencia de mecanismos adecuados para la visualización de la producción científica peruana a través de la implementación de un Sistema de Recomendación de Publicaciones Científicas Nacionales de Acceso Abierto para los investigadores calificados del SINACYT.
Esta alternativa se basa en la generación de recomendaciones personalizadas de publicaciones en ALICIA, a través del uso del filtrado basado en contenido tomando en cuenta un perfil de investigador. Este perfil se construyó a partir de la información relevante sobre su producción científica publicada en Scopus y Orcid. La generación de recomendaciones se basó en la técnica de LSA (Latent Semantic Analysis), para descubrir estructuras semánticas escondidas sobre un conjunto de publicaciones científicas, y la técnica de Similitud Coseno, para encontrar aquellas publicaciones científicas con el mayor nivel de similitud.
Para el Proyecto, se implementaron los módulos de extracción, en donde se recoge la data de las publicaciones en ALICIA y las publicaciones en Scopus y Orcid para cada uno de los investigadores registrados en DINA a través de la técnica de extracción de datos de sitios web (web scrapping); de pre procesamiento, en donde se busca la mejora de la calidad de la data previamente extraída para su posterior uso en el modelo analítico dentro del marco de la minería de texto; de recomendación, en donde se capacita un modelo LSA y se generan recomendaciones sobre qué publicaciones científicas pueden interesar a los usuarios basado en sus publicaciones científicas en Scopus y Orcid; y de servicio, en donde se permite a otras aplicaciones consumir las recomendaciones generadas por el sistema.