Evaluación de nanopartículas de plata estabilizadas con ligandos sulfurados como sensores de Hg (II) en muestras de agua
Acceso a Texto completo
Abstract
El mercurio es uno de los metales pesados más tóxicos que existen y se encuentra
ampliamente distribuido en el medio ambiente ya que puede ser encontrado en el agua, el
aire y el suelo. El mercurio no es biodegradable, por lo que permanece en los diversos
ecosistemas y se acumula en diversas especies marinas. El mercurio es ampliamente
utilizado en la minería aurífera informal e ilegal en nuestro país, cuyos efluentes son
vertidos en los ríos dejando expuesta a la población y el medio ambiente ante este
contaminante. Entre las diferentes formas de mercurio, el Hg2+ es la forma más común y
estable, debido a su gran solubilidad en agua. Debido a la presencia de microorganismos
en los sistemas acuáticos, el mercurio inorgánico es convertido en metil mercurio,
sustancia altamente tóxica para los organismos vivos.
Comúnmente, para el análisis de mercurio se emplean técnicas como la espectrometría de
absorción atómica de llama y la espectrometría de masas con plasma acoplado
inductivamente, que presentan excelentes límites de detección, pero requieren de tiempos
largos de preparación de muestra e instrumentación especializada y costosa. Por ello, en
los últimos años se han buscados metodologías alternativas para la detección de mercurio.
Dentro de los nuevos avances tecnológicos y científicos han surgido investigaciones
sobre el uso de nanopartículas de metales nobles (plata y oro) como sensores
colorimétricos debido a la banda de resonancia plasmónica de estas nanopartículas que
aparece en la región UV-Visible del espectro electromagnético. Este nuevo enfoque se
presenta como una alternativa interesante, debido a los bajos costos de producción, su
capacidad de brindar una respuesta analítica rápida y confiable, junto con el empleo de
una instrumentación más accesible como los espectrofotómetros UV-Vis. Además, este
nuevo enfoque permite la adaptación de los nuevos sistemas para poder contar con
dispositivos portátiles que permitan realizar mediciones in situ.
En el presente trabajo, se han sintetizado AgNPs esféricas y se han caracterizado mediante
microscopía electrónica de transmisión y espectrofotometría UV-Vis. Además, se ha
implementado y optimizado un protocolo de funcionalización para las AgNPs con los
ligandos sulfurados cisteamina y cisteína, con el fin de detectar Hg2+ en agua.
Finalmente, se ha optimizado un método colorimétrico de cuantificación de Hg2+ en agua
empleando las AgNPs funcionalizadas. Para el sensor de AgNPs-CyNH2, se logró obtener
un límite de detección de 108 nM con un tiempo de incubación de 2 min, mientras que
para el sensor de AgNPs-Cy, se obtuvo un límite de detección de 441 nM con un tiempo
de incubación de 20 min. Mercury is one of the most toxic heavy metals that exists and is widely distributed in the
environment and can be found in water, air and soil. Mercury is not biodegradable, so it
remains in diverse ecosystems and accumulates in various marine species. In our country,
mercury is widely used in informal and illegal gold mining. The resulting effluents are
discharged into rivers, exposing the population and the environment to this pollutant.
Among the different forms of mercury, Hg2+ is the most common and stable form, due to
its great solubility in water. Due to the presence of microorganisms in aquatic systems,
inorganic mercury is converted into methyl mercury, a substance highly toxic to living
organisms.
Commonly, the analysis of mercury is made by techniques such as flame atomic
absorption spectrometry and inductively coupled plasma mass spectrometry (ICP-MS)
are used. They have excellent limits of detection, but they require long sample preparation
times and specialized and costly instrumentation. For this reason, alternative
methodologies for the detection of mercury have been sought in recent years. Among the
new technological and scientific advances, the use of noble metal nanoparticles (silver
and gold) as colorimetric sensors has emerged. These sensors exploit the localized surface
plasmon band of the nanoparticles, which appears in the UV-Visible region of the
electromagnetic spectrum. This new approach is presented as an interesting alternative,
due to the low production costs, its ability to provide a rapid and reliable analytical
response, together with the use of more accessible instrumentation such as UV-Vis
spectrophotometers. In addition, this new approach allows the adaptation of the new
systems in order to have portable devices that allow on-site measurements.
In the present research work, spherical AgNPs have been synthesized and characterized
by transmission electron microscopy and UV-Vis spectrophotometry. A functionalization
protocol has been implemented and optimized for AgNPs with the sulfuric ligands
cysteamine and cysteine in order to detect Hg2+ in water.
Finally, a colorimetric method for quantify Hg2+ in water using the functionalized AgNPs
has been optimized. For the AgNPs-CyNH2 sensor, it was possible to obtain a detection
limit of 108 nM with an incubation time of 2 min, while for the AgNPs-Cy sensor, a
detection limit of 441 nM was obtained with an incubation time of 20 min.