Simulación numérica de un flujo de agua a través de una válvula tipo mariposa de doble excentricidad
Acceso a Texto completo
Abstract
Las válvulas mariposa son componentes muy utilizados para el transporte de fluidos a
través de tuberías. Dentro de estas válvulas, destacan las válvulas mariposas de doble
excentricidad por tener ciertas ventajas como por ejemplo la reducción del desgaste de
su sellado en comparación con las válvulas mariposas clásicas. Sin embargo, su asimetría origina un comportamiento más crítico en cuanto a las características hidráulicas del flujo, como son: la pérdida de carga, la distorsión del perfil de velocidades y el riesgo a la cavitación. Como es usual utilizar estas válvulas para control on-off de flujos, se desean bajas pérdidas de carga en su posición totalmente abierta. Cuando estas válvulas se sitúan directamente en el ingreso de turbomáquinas, es importante conocer el grado de distorsión del perfil de velocidades que entra en la máquina ya que ésto modifica los ángulos de ataque del flujo con los álabes y con ello
el punto de operación. Y si se opera con presiones bajas también se debe considerar
el riesgo de cavitación en partes de la válvula donde se eleve localmente la velocidad.
Son estas tres características las que se estudiarán en una válvula mariposa previamente diseñada en la PUCP, con el fin de mejorar la geometría original y con
ello su comportamiento hidráulico. Idealmente, se deben realizar ensayos experimentales para conocer el comportamiento hidráulico, pero estos métodos generalmente resultan muy costosos. Una alternativa utilizada hoy en día para la optimización de productos es el estudio computacional CFD (Computational Fluid Dynamics) el cual tiene ciertas ventajas, ya que entrega la información de todos los puntos del dominio y permite realizar cambios en la geometría o en el flujo de forma rápida y menos costosa.
En el presente trabajo se realiza el análisis CFD de una válvula mariposa de doble excentricidad con un diámetro nominal de 610mm, en posición completamente abierta con un caudal aproximado de agua de 1 m3/s a 10ºC lo que implica una velocidad media en la tubería de aproximadamente 3.5 m/s. Para ello se utilizó el programa ANSYS CFX 14.0 y se empleó el modelo de turbulencia SST. Luego, se realizó una modificación del diseño original para obtener un diseño alternativo el cual es incluso un
2% más ligero. Lo más importante fue que se consiguió una reducción del 38.3% del
coeficiente de pérdidas del diseño original y se aumentó un 40.4% la resistencia a la
cavitación del diseño original. Sin embargo, al igual que en el diseño original, el flujo
recién comienza a recuperar la forma que tenía antes de ingresar a la válvula después
de 14 diámetros nominales aguas abajo de la misma. Butterfly valves are components used for the transport of fluids through pipes. Among these valves, double eccentric butterfly valves have certain advantages, for example
the reduction of wear in the sealing system compared to classic butterfly valves.
However, its asymmetry originates some problems in the hydraulic characteristics of
the flow such as: pressure loss, distortion of the velocity profile and the risk of
cavitation. It is usual to use these valves in the control on-off of flows and because of
that, minimum losses are desired when the valves are fully opened. When these valves
are located directly at the inlet of turbomachinery, it is important to know the degree of
distortion of the velocity profile that enters the machine because this can modify the
angles of attack of the flow with the blades and thus the point of operation. And if the
valve operates with low pressures, it will be necessary to study the risk of cavitation in
the regions of the flow with high velocities.
These three characteristics are going to be studied in a butterfly valve previously
designed at PUCP, in order to improve the original geometry and its hydraulic behavior.
Ideally, experimental methods are required in order to know the hydraulic behaviour,
but these methods are usually very expensive. An alternative used today for the
optimization of products is the computational study CFD (Computational Fluid
Dynamics), which has certain advantages, since it gives information of all the points of
the domain and allows the researcher to make fast and inexpensive changes in
geometry or flow conditions.
In this work, a CFD analysis of a double eccentric butterfly valve is done. The nominal
diameter of the valve was 610mm and the valve was fully opened. Its nominal flow was
approximately 1 m3/s of water at 10 °C which implied a mean velocity of the flow of 3.5
m/s. The CFD simulation was done using ANSYS CFX 14.0 and the SST turbulence
model was used. Then, a modification of the original design was made in order to
obtain an alternative design which was 2% lighter. The most important achievement
was that the alternative design had a reduction of 38.3% of the loss coefficient of the
original design and had an increased of 40.4% of the cavitation resistance of the
original design. However, the same as the original design, the flow started to achieve a
uniform velocity profile after 14 nominal diameters, downstream of the valve.