3. Licenciatura
URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/7312
Explorar
2 resultados
Resultados de búsqueda
Ítem Texto completo enlazado Aplicación de técnicas de Machine Learning e imágenes de radar para la detección temprana de invasiones en zonas de alto riesgo de desastres(Pontificia Universidad Católica del Perú, 2023-11-22) Jaimes Cucho, Javier Alonso; Moya Huallpa, Luis AngelLa presente tesis aborda la problemática de las invasiones de terrenos por grupos vulnerables. En la mayoría de casos estos grupos se asientan en zonas de alto riesgo de desastres debido a fenómenos naturales. Lo expuesto previamente se evidenció en los procesos migratorios del siglo pasado y en invasiones más recientes donde grupos de personas vulnerables se asentaron en zonas costeras periféricas a las ciudades. Estas zonas según los distintos mapas elaborados por el SIGRID y CISMID tienen mayor probabilidad de ocurrencia de desastres. Por lo tanto, esta investigación tiene por finalidad identificar, de forma temprana y remota, la creciente tasa de asentamientos informales en zonas de alto riesgo de desastres. Para tal propósito se plantea una metodología que permita detectar estructuras y patrones de asentamientos informales. Para la detección de invasiones se emplean diversas técnicas de machine learning empleando imágenes satelitales de radar, de libre acceso, de media resolución (10m) y técnica de postprocesamiento para la mejora en el desempeño de la predicción. Para la evaluación de la metodología planteada se empleó como caso de estudio la invasión en Lomo de Corvina, ocurrido en abril del 2021. Para las áreas invadidas se obtuvo valores promedio de precision del 39%, lo cual es indicador que los algoritmos sobrestiman las áreas invadidas debido a las distorsiones complejas y ruido en las imágenes de radar, y recall del 85%, lo que indica que los algoritmos identifican correctamente un alto porcentaje del área invadida. Por lo tanto, se puede emplear esta metodología para la detección temprana de áreas invadidas con características similares a las estudiadas. Se lograrán mejores resultados si las invasiones son repentinas, de gran extensión y están ubicadas en zonas poco accidentadas y sin cubierta vegetal.Ítem Texto completo enlazado Estado de conservación de la Puya raimondii Harms mediante técnicas de teledetección y modelos Deep Learning en el área de conservación regional bosque de Puya Raimondi - Titankayocc, Ayacucho(Pontificia Universidad Católica del Perú, 2023-07-26) Zárate Sotelo, José Luis Ricardo; Timana de la Flor, Martin EnriqueLos estudios de la Puya raimondii Harms en el Perú son escasos, pese a su valor ecológico y económico para los ecosistemas altoandinos. Actualmente, su situación es grave debido a las amenazas climáticas y antropogénicas que afectan en el crecimiento poblacional de la especie. Consecuencia de ello, la P. raimondii se encuentra declarada en peligro de extinción, ya que presenta poca variabilidad genética para soportar dichos cambios; además, produce una sola inflorescencia al final de su periodo vegetativo. De manera que, el objetivo general de esta tesis es estudiar y evaluar el estado de conservación de la P. raimondii a través de la teledetección y el uso de nuevas técnicas de detección de objetos como son los algoritmos de Deep Learning aplicado en un área representativa de puyas como es el Área de Conservación Regional Bosque de Puya Raimondi - Titankayocc, departamento de Ayacucho. La metodología implica el uso de herramientas de Sistemas de Información Geográfica y análisis espacial basado en la geoestadística para estimar el número de individuos a través de imágenes satelitales de Google Earth; posteriormente, calcular los valores de las variables ambientales como el Índice de Vegetación de Diferencia Normalizada (NDVI) y el Índice de Rugosidad del Terreno (TRI) provenientes de satélites de alta resolución, CBERS-4A y SRTM respectivamente; finalmente, discretizar la información hallada para caracterizar el hábitat de la P. raimondii dentro del área de conservación. En ese sentido, los resultados alcanzados concluyeron en la detección de 58 607 individuos usando imágenes Google Earth. Asimismo, la actividad fotosintética registrada tenía como valor promedio un 0.23 según el NDVI; de igual manera, para el caso del TRI se identificaron los hábitats más propicios para la especie los cuales fueron suelos rugosos ligeros a elevados ubicados principalmente en los ejes Este y Sur. Dicho esto, la propuesta de nuevas estrategias para el estudio de conservación implicó abordar los conceptos relacionados a la ecología vegetal, análisis espacial e inteligencia artificial.