3. Licenciatura
URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/7312
Explorar
16 resultados
Resultados de búsqueda
Ítem Texto completo enlazado Sistema de reconocimiento y clasificación de instrumental quirúrgico utilizando el robot Baxter(Pontificia Universidad Católica del Perú, 2021-04-16) Valencia Mesías, Gerardo Eleazar; Angulo Salas, Antonio LincolnActualmente, el uso de robots en diferentes campos y ambientes se ha convertido en tema de investigación para profesionales relacionados al ámbito científico, ingenieros de distintas ramas y especialistas en temas sociales y culturales, dando paso a nuevos conceptos como la robótica de asistencia y/o social lo que nos revela nuevos tópicos y puntos de acción de la mecatrónica hoy en día. Esta nueva concepción de robótica permite que se utilice tecnología como apoyo a diferentes áreas entre las que se encuentran la medicina y el cuidado de la salud donde se necesita un grado mayor de innovación tecnológica especialmente en la automatización de procesos que forman parte de una cadena mayor de producción. Esta problemática sirve como punto de partida y motivación para el presente trabajo de tesis que plantea el desarrollo de un sistema compuesto por el robot industrial Baxter junto con algoritmos de visión por computadora para el reconocimiento de instrumental quirúrgico usados en ambientes hospitalarios específicamente en centrales de esterilización. Los principales objetivos de este sistema son: automatizar tareas recurrentes de manera eficiente en el menor tiempo posible, obtener y llevar control de los diversos materiales clasificados (cantidad, tipo, etc.) y aprovechar la capacidad de este robot para trabajar en conjunto con operarios o reemplazarlos según sea conveniente con el fin de evitar riesgos potenciales. El sistema planteado consiste en la implementación de algoritmos robustos de reconocimiento por imágenes en Python, el diseño de un actuador o gripper adaptado especialmente para el robot Baxter que permita un correcto manejo y traslado del material con el cual se tendrá contacto y el envío de los datos recolectados en el todo proceso a un servidor web local. Los resultados obtenidos incluyen el desarrollo de un sistema robusto compuesto por algoritmos de procesamiento de imágenes junto con un gripper mecánico de bajo costo impreso en 3D, así como pruebas de concepto de los puntos más relevantes que validen la lógica y efectividad del trabajo propuesto mediante simulaciones.Ítem Texto completo enlazado Diseño e implementación de las funciones de agarre y levante en un brazo Kinova usando señales EEG y Deep Learning(Pontificia Universidad Católica del Perú, 2020-09-24) Neyra Pérez, Juan Manuel; Villota Cerna, Elizabeth RoxanaMiles de personas en el mundo son afectadas por enfermedades causantes de parálisis tales como esclerosis lateral amiotrófica, lesiones en la médula espinal y distrofia muscular. En los últimos años, investigadores han buscado desarrollar soluciones tecnológicas para asistir a estos pacientes. En el 2012, una mujer con tetraplejia, causada por un paro cerebral, fue capaz de acercar una botella a su boca y beber de ella, utilizando señales EEG invasivas [1]. Recientemente, en el 2016, ahora mediante sensores EEG no invasivos, se realizaron pruebas en 13 sujetos sanos para mover un brazo robot en dos dimensiones [2]. Buscando colaborar en el desarrollo de robots asistenciales, el presente trabajo propone el diseño e implementación de las funciones de 'agarre' y 'levante' en el brazo robot Kinova, donde las señales de activación provendrán de señales EEG y el algoritmo de traducción estará basados en modelos de deep learning. Los modelos de deep learning mencionados serán basados en la solución propuesta por Alex Barachant y Rafael Cycon para la clasificación de señales EEG [3]. El dataset que se utilizará para el entrenamiento se toma del repositorio WAY-EEG-GAL financiado por la unión europea [4]. A pesar de que las señales EEG corresponden a movimientos físicos reales, los cuales no pueden ser realizados por los pacientes con las enfermedades antes mencionadas, este trabajo busca brindar un aporte a la literatura médica e ingenieril y al avance de las aplicaciones de interfaz cerebro-computador. Adicionalmente, se busca proponer el método para evaluar el desempeño en una prueba experimental del algoritmo referido, lo cual no se ha abordado en la literatura presente hasta el momento.Ítem Texto completo enlazado Perforadora de rocas teleoperada para la minería profunda, con control autónomo del brazo hidráulico en un grado de libertad(Pontificia Universidad Católica del Perú, 2017-06-02) Mendoza Fuente, Piero Fabrizzio; Furukawa Fukuda, Roberto SumiyoshiLa perforación y voladura de rocas son procedimientos muy importantes en la minería subterránea para la extracción de minerales, es por esta razón que es importante que estos procedimientos se realicen correctamente, de forma que sean eficientes y brinden la seguridad necesaria para el operario. Casi la mayoría de los jumbos hidráulicos y neumáticos en el mundo son operados manualmente, y en el Perú, ninguna empresa minera tiene como activo una perforadora automática o teleoperada. Esto genera riesgos para su salud, por el riesgo de derrumbes y agentes tóxicos en el ambiente; y además la repetitividad del trabajo depende directamente de la experiencia del operador. Con este fin se han seleccionado los sensores y actuadores para la teleoperación de la maquinaria y el control del brazo perforador en un grado de libertad, tomando como referencia el jumbo hidráulico Boomer 282, del fabricante Atlas Copco. La selección de este modelo fue para poder probar que se puede realizar un control remoto de cualquier maquinaria con mandos manuales. El sistema cuenta con sensores lineales para medir la carrera de los cilindros hidráulicos, un sistema anti-colisión, cámaras para la visión de operador a distancia y control automático de la posición del brazo perforador para su movimiento vertical. El resultado es el vehículo teleoperado por medio de WiFi y con el control del movimiento vertical de su brazo perforador, así como el control electrónico de las funciones de perforación por medio de válvulas electrohidráulicas y controladores.Ítem Texto completo enlazado Diseño de un sistema mecatrónico para la separación de envases defectuosos de vidrio mediante la lectura del número de molde(Pontificia Universidad Católica del Perú, 2016-05-14) Granda Salvador, Antonio Rafael; Abarca Abarca, Mónica LucíaActualmente, en toda empresa de manufactura se requiere un estricto control de la calidad del producto final; por ello, constantemente, se desea implementar equipos de inspección que proporcionen un mayor detalle sobre las evaluaciones requeridas por el cliente. En el caso de las empresas de manufactura de botellas de vidrio, los controles de calidad deben ser los más rigurosos posibles; debido a que, el producto final tiene contacto directo con el cliente. Los envases de vidrio cuentan con un código en la parte inferior, que los identifica según el número de molde en el cual han sido fabricados. Si bien no se puede detectar el 100% de los tipos de defectos, sí se puede detectar este código con el cual según las evaluaciones realizadas en planta, se puede determinar que durante un periodo de tiempo definido, todos los envases pertenecientes a una moldura en particular, cuentan con defectos. Por ello, la propuesta del proyecto es un equipo que lea el número de molde de los envases en una línea de producción y según los requerimientos de planta se programe el descarte de los envases que cuenten con el número de molde que contengan defectos. El objetivo del proyecto es el diseño de un sistema mecatrónico que minimice la cantidad de posibles filtraciones de envases defectuosos en el empaque enviado al cliente. Esto involucra mitigar los problemas con los clientes y la reducción del alto sobre costo utilizado en personal externo a la empresa que se dedica a la inspección de cada envase dentro de un lote designado como defectuoso.Ítem Texto completo enlazado Desarrollo de un algoritmo que permita la implementación futura de un software para el análisis cinemático inverso de mecanismos en 3D(Pontificia Universidad Católica del Perú, 2016-03-17) Peinado Bravo, Ángel Agustín César; Franco Rodríguez, RosendoLa presente tesis tiene por objetivo la elaboración de un algoritmo para el análisis cinemático inverso de mecanismos en el espacio, el cual abarcar mecanismos clásicos y mecanismos empleados en la actualidad, tales como brazos robóticos. Con el fin de realizar el análisis cinemático de diversos mecanismos usando el mismo algoritmo, se plantea el uso de un método iterativo para la evaluación de las ecuaciones de movimiento. En este proceso se usan los parámetros de Euler como sistema de coordenadas generalizadas, así como la pseudo-inversión para la resolución de la inversión del jacobiano y el método de Newton-Raphson como método de minimización. Además, se presenta una librería de juntas para el modelamiento de diferentes tipos de juntas entre eslabones, permitiendo el estudio de diversos mecanismos. El algoritmo se implementa en el programa de Matlab, emplea archivos tipo texto para el ingreso de información y ofrece una interfaz tipo GUI para la obtención de diversas gráficas requeridas por el usuario. Durante la elaboración del algoritmo se presentaron dificultades en la eliminación de restricciones redundantes y evasión de singularidades del mecanismo, en específico en mecanismos contenidos en un plano. Esta dificultad fue superada empleando modelos depurados por parte del usuario. Para la validación del algoritmo se desarrollaron dos ejemplos de aplicación, un mecanismo clásico Biela-Manivela-Corredera y un brazo robótico tipo esférico. Los resultados obtenidos en estos ejemplos usando el algoritmo implementado y los obtenidos por otros autores son similares, apreciándose una adecuada correspondencia en los valores de posición, velocidad y aceleración. El algoritmo elaborado e implementado presenta subrutinas específicas y una librería de juntas que pueden ser empleados en un programa para el análisis cinemático y dinámico de mecanismos espaciales a ser desarrollado en un futuro.Ítem Texto completo enlazado Diseño mecánico de un gripper para brazo robot para el paletizado de cajas de 20 kg y pallets de 25 kg(Pontificia Universidad Católica del Perú, 2016-02-19) Roncal Jaico, Julio Cesar; Girón Medina, Víctor SergioLa presente tesis comprende el diseño mecánico de un gripper (garra o manipulador) para brazo robot para el paletizado de cajas de 20kg y pallets de 25kg. La función principal del gripper es sujetar y descargar pallets y cajas por separado. La función del conjunto es transportar un pallet proveniente de un conjunto de pallets apilados hacia la zona de paletizado. Después, transportar cajas de una en una, provenientes de una faja transportadora, hacia la zona de paletizado. En esta zona, se descargan las cajas sobre el pallet formando un arreglo. El diseño óptimo fue el resultado de un proceso de selección dentro de las alternativas de solución planteadas, las cuales, se evaluaron tanto técnica como económicamente hasta llegar a la mejor opción que cumpla con las exigencias de diseño. La metodología utilizada en el presente diseño está basada en las recomendaciones de la Asociación Alemana de Ingenieros (VDI 2221). Posteriormente, se calculan, dimensionan y seleccionan los elementos principales que permitan al gripper la sujeción de cajas y de pallets. Dentro del cálculo, se experimentó en el laboratorio de manufactura de la PUCP, la deformación que sufre la caja al aplicarle la fuerza de sujeción, concluyéndose así que la caja no sufre daños en la manipulación. Además, se presentan los planos de ensamble y despiece del gripper así como los materiales necesarios para su construcción. Finalmente, se presenta la cotización para la fabricación de este, obteniéndose un costo aproximado de S/.12 279,6 Nuevos Soles, costo que podría disminuir optimizando formas constructivas y materiales utilizados.Ítem Texto completo enlazado Brazo robótico de 5GDL con sistema de control modificable por el usuario para fines de investigación en ingeniería robótica(Pontificia Universidad Católica del Perú, 2016-01-18) Soto Bravo, Carlos Andrés; Peña Pachamango, Denis BryanEn el presente trabajo se plantea el diseño de un brazo robótico de 5 grados de libertad con un sistema de control de movimiento modificable por el usuario y un control de seguridad que garantice el bienestar del usuario y de la máquina. Se realizan los cálculos del diseño mecánico y electrónico necesarios que garanticen el buen funcionamiento de la máquina. Para ello, se obtiene el modelo cinemático del brazo robótico por medio de la obtención de los parámetros de Denavit-Hartenberg y el método geométrico. Por otro lado, se obtiene el modelo dinámico del robot resolviendo las ecuaciones de Euler-Lagrange. El dimensionamiento de piezas, ensamblaje y planos mecánicos del robot se realiza mediante el software Autodesk Inventor; así como también se consigue exportar el archivo CAD al software Matlab con la finalidad de corroborar una posible aplicación del diseño propuesto. Además, se realiza los circuitos esquemáticos del sistema usando el programa Eagle, para la selección de componentes electrónicos se hace uso de diferentes manuales y datasheets otorgados por los fabricantes. Para la cotización de los componentes utilizados, se obtuvo proformas y cotizaciones por correo electrónico, cabe resaltar que en el caso de componentes importados se está Considerando el costo de envió. Respecto a los resultados obtenidos, estos fueron positivos debido a que se consigue tener un diseño de brazo robótico que sea seguro para el usuario debido a que contiene sensores de corriente para evitar una sobrecarga en los motores y una parada de emergencia para detener el movimiento del robot cuando se requiera. Además, se le permite al usuario colocar las diferentes ecuaciones de movimiento para el control de robot y de esta manera poder tener un control libre a voluntad del usuario. Algunos cálculos fueron realizados por el software Autodesk Inventor, el reporte mostrado por este programa mostró un diseño valido y resultados positivos que ratificaron como correctos los parámetros ingresados para su análisis. En conclusión, el brazo robótico diseñado tiene un fin educacional y de investigación. El sistema de control de movimiento puede ser modificado por el usuario; es decir, le permite alterar diferentes parámetros en las ecuaciones de movimiento para su control. Cabe resaltar que se le proporciona al usuario información de la cinemática y dinámica del brazo robótico; de esta manera, con pruebas experimentales es posible corroborarlas. Esta información ayudará al usuario a realizar el control del brazo robótico diseñado.Ítem Texto completo enlazado Diseño e implementación de un sistema de control e interfaz para un brazo robótico de 5GLD(Pontificia Universidad Católica del Perú, 2015-12-09) Luyo Gonzales, Christian; Carrera Soria, Willy EduardoEn el presente documento de tesis se desarrolla un sistema de control para la manipulación y planificación de trayectorias de un robot de cinco grados de libertad. Este robot que ha sido fabricado por la Maestría de Ingeniería Mecatrónica de la Pontificia Universidad Católica del Perú, forma parte de un proyecto multidisciplinario que busca desarrollar un sistema robótico capaz de ser utilizado para pruebas dinámicas y cinemáticas en este área. En el mencionado proyecto se realizó el diseño mecánico correspondiente al brazo robótico, que incluyó el dimensionamiento y posterior fabricación de cada uno de los eslabones. En la parte electrónica, se dimensionó y adquirió motores con encoders que permitirían obtener señales de posición y dar movimiento a los eslabones. Con toda la información adquirida a través de los dimensionamientos y ensayos mecánico-eléctricos, se logró generar modelos matemáticos de función de transferencia de motores para el diseño del control discreto. Usando estas funciones de transferencia, se implementó un sistema de control distribuido basado en la implementación de un algoritmo PD que permite el control angular de los motores con 5 microcontroladores comunicados en protocolo I2C.Las referencias para cada control de lazo cerrado, son generadas desde una interfaz que tiene internamente un generador de referencias y enviadas por protocolo serial al microcontrolador maestro. Este generador tiene un funcionamiento basado en modelos cinemáticos que toma como principio los algoritmos de cinemática directa e inversa para la generación de trayectorias. Finalmente, el sistema es comandado por un usuario que podrá definir el punto final de la trayectoria del brazo en coordenadas X, Y, Z. Además, el usuario podrá realizar control individual de cada uno de los eslabones y observar los valores de posición X, Y, Z en tiempo real mediante gráficas y valores.Ítem Texto completo enlazado Exoesqueleto robótico de miembro superior para la asistencia de carga y prevención de lesiones músculo-esqueléticas en trabajadores de construccción civil(Pontificia Universidad Católica del Perú, 2014-08-26) Mendoza Quispe, Arturo; Cuéllar Córdova, Francisco FabiánEl desarrollo de varias tecnologías ha permitido que hoy en día los exoesqueletos robóticos sean una realidad, siendo actualmente usados en distintas áreas de trabajo; sin embargo, éstos aún presentan ciertas limitaciones, como por ejemplo, restringir el desplazamiento del usuario si éstos están fijos a soportes. Por otro lado, el tipo de trabajo que realiza el trabajador de construcción civil, como la carga y transporte de elementos de construcción, lo pone en una situación de predisposición a sufrir lesiones como fracturas, esguinces y diversos trastornos músculo-esqueléticos. El presente proyecto consiste en el diseño de un exoesqueleto de miembro superior que alivie el esfuerzo en el transporte de carga y disminuya los riesgos a la salud de los trabajadores de construcción civil. Se presenta una solución de un exoesqueleto pasivo que utiliza el mecanismo kickstart ratchet –mecanismo que permite el movimiento rotacional en tan sólo un sentido y que utiliza los dientes de engrane en las caras planas de los discos en contacto para distribuir el torque entre todos los dientes de la pieza-, para poder soportar la carga aplicada por largos períodos de tiempo sin la necesidad de un suministro eléctrico permanente. Este diseño es ergonómico y permite un uso continuo y prolongado, es seguro para el usuario, compacto y fácil de transportar, es autónomo y no limita del desplazamiento del usuario. Así mismo, previene lesiones musculo-esqueléticas a través de la corrección de la postura del usuario, distribuyendo la carga uniformemente en la posición óptima. Además, resulta en una alternativa más económica que el costo que implica una lesión músculo-esquelética debido a las horas-hombre perdidas, gasto en medicamentos, tiempo invertido en fisioterapia, hasta inclusive posibles demandas a la empresa responsable. Finalmente, se espera que gracias al uso del exoesqueleto robótico, el trabajador de construcción civil pueda aumentar su eficiencia laboral al ser capaz de cargar y transportar un mayor número de elementos en un mismo período de tiempo que si no contara con el exoesqueleto, puesto que presentaría menos cansancio.Ítem Texto completo enlazado Sistema de control de la cinemática de una plataforma Stewart-Gough para la rehabilitación de la movilidad del tobillo(Pontificia Universidad Católica del Perú, 2013-04-29) Paredes Zevallos, Daniel Leoncio; Callupe Pérez, Rocío LilianaEn la medicina de rehabilitación, los mecanismos paralelos del tipo plataforma de Stewart-Gough están siendo usados para la rehabilitación de tobillo de pacientes con discapacidad. El movimiento de la plataforma debe simular o seguir, de manera precisa, a los movimientos de un tobillo al querer caminar o ponerse de pie. Por lo tanto, como parte de un proyecto que tiene como finalidad recrear la trayectoria recorrida por el conjunto tobillo-pie durante la marcha, este trabajo de tesis se enfoca en el diseño e implementación del sistema de control de la cinemática de una plataforma Stewart-Gough. Para lograr posicionar de manera exacta y precisa la plataforma en una posición y orientación dada, primero, fue necesario hallar un modelo aproximando de los actuadores de la plataforma. Con los modelos hallados se simuló el comportamiento de los actuadores, y al comparar los resultados de estas simulaciones con los datos reales se obtuvieron errores menores al 1%. El control diseñado para cada actuador se basa en una topología de lazo con retroalimentación negativa, cuyo algoritmo de control es un PID (proporcional – integral - derivativo). Sin embargo, dado que los modelos obtenidos no eran lineales, no era posible usar técnicas de sintonización para algoritmos PID convencionales. Por lo cual fue necesario derivar una ecuación que relaciona los parámetros del algoritmo con el tiempo de establecimiento deseado y el modelo de los actuadores. Finalmente, con el sistema de control implementado el microprocesador XS1-L1, de procesamiento multi-hilo, se logró obtener errores dentro del rango de movimiento de un tobillo (3% en una marcha normal, y tiempos de establecimiento para cada actuador con error ± 0.5 segundos con respecto al tiempo deseado.