3. Licenciatura

URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/7312

Explorar

Resultados de búsqueda

Mostrando 1 - 2 de 2
  • Ítem
    Implementación de un lematizador para una lengua de escasos recursos: caso shipibo-konibo
    (Pontificia Universidad Católica del Perú, 2019-02-15) Pereira Noriega, José Humberto; Oncevay Marcos, Felix Arturo
    Desde que el Ministerio de Educación oficializó el alfabeto shipibo-konibo, existe la necesidad de generar una gran cantidad de documentos educativos y oficiales para los hablantes de esta lengua, los cuales solo se realizan actualmente mediante el apoyo de traductores o personas bilingües. Sin embargo, en el campo de la lingüística computacional existen herramientas que permiten facilitar estas labores, como es el caso de un lematizador, el cual se encarga de obtener el lema o forma base de una palabra a partir de su forma flexionada. Su realización se da comúnmente mediante dos métodos: el uso de reglas morfológicas y el uso de diccionarios. Debido a esto, este proyecto tiene como objetivo principal desarrollar una herramienta de lematización para el shipibo-konibo usando un corpus de palabras, la cual se base en los estándares de anotación utilizados en otras lenguas, y que sea fácil de utilizar mediante una librería de funciones y un servicio web. Esta herramienta final se realizó utilizando principalmente el método de clasificación de los k-vecinos más cercanos, el cual permite estimar la clase de un nuevo caso mediante la comparación de sus características con las de casos previamente clasificados y dando como resultado la clase más frecuente para valores similares. Finalmente, la herramienta de lematización desarrollada logró alcanzar una precisión de 0.736 y de esta manera superar a herramientas utilizadas en otros idiomas.
  • Ítem
    Implementación de algoritmos para la identificación automática de lenguas originarias peruanas en un repositorio digital
    (Pontificia Universidad Católica del Perú, 2019-02-12) Espichán Linares, Alexandra Mercedes; Oncevay Marcos, Félix Arturo
    Debido a la revitalización lingüística en el Perú a lo largo de los últimos años, existe un creciente interés por reforzar la educación bilingüe en el país y aumentar la investigación enfocada en sus lenguas nativas. Asimismo, hay que considerar que en el Perú actualmente alrededor de 4 millones de personas hablan alguna de las 47 lenguas nativas conservadas. Por tanto, hay una gran variedad de lenguas con las cuales trabajar, por lo que sería de utilidad contar con herramientas automáticas que permitan agilizar algunas tareas en el estudio e investigación de dichas lenguas. De este modo, y desde el punto de vista de la informática, una de las primeras y principales tareas lingüísticas que incorporan métodos computacionales es la identificación automática de lenguaje, la cual se refiere a determinar el lenguaje en el que está escrito un texto dado, el cual puede ser un documento, un párrafo o incluso una oración. Este además es un paso esencial en el procesamiento automático de los datos del mundo real, donde una multitud de lenguajes pueden estar presentes, ya que las técnicas de procesamiento del lenguaje natural típicamente presuponen que todos los documentos a ser procesados están escritos en un lenguaje dado. Por lo tanto, este trabajo se enfoca en tres pasos: (1) en construir desde cero un corpus anotado digital para 49 lenguas y dialectos indígenas peruanos, (2) en adaptarse a los enfoques de aprendizaje de máquina estándar y profundo para la identificación de lenguas, y (3) en comparar estadísticamente los resultados obtenidos. Los resultados obtenidos fueron prometedores, el modelo estándar superó al modelo de aprendizaje profundo tal como se esperaba, con una precisión promedio de 95.9%. En el futuro, se espera que se aproveche el corpus y el modelo para tareas más complejas.