3. Licenciatura
URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/7312
Explorar
3 resultados
Resultados de búsqueda
Ítem Texto completo enlazado Análisis de sentimiento en información de medios periodísticos y redes sociales mediante redes neuronales recurrentes(Pontificia Universidad Católica del Perú, 2022-02-06) Zarate Calderon, Gabriel Helard; Beltrán Castañón, César ArmandoEl análisis de sentimiento es un área de investigación importante en el procesamiento de lenguaje natural, la cual está en constante crecimiento especialmente por la generación de grandes volúmenes de información textual, y el avance tecnológico en lo que se refiere al almacenamiento y los algoritmos inteligentes para el análisis de esta. Esta tarea cada vez va tomando más fuerza su uso en diferentes aplicaciones computacionales dado el crecimiento exponencial del uso de medios digitales y redes sociales, las cuales, gracias a la información debidamente procesada, pueden ser muy valiosas para los negocios. Actualmente existen procedimientos ambiguos para la realización de dicha tarea y sobre todo para textos en español y de manera específica para notas periodísticas y publicaciones realizadas en redes sociales, todo ello por el hecho de la escasa cantidad de herramientas existentes para la presente tarea, por ende el proceso de clasificación de las polaridades de los sentimientos expresadas en los textos se realiza de manera manual por expertos en el tema, generándose así resultados ambiguos y sesgados según la experiencia del encargado, lo cual generaba resultados que no eran del todo fiables retándole valor a dicha tarea, además del hecho de que realizarlo de manera totalmente manual resultaba muy pesado y se realizaba en un periodo largo de tiempo. Para la realización de dicha tarea existen múltiples técnicas de aprendizaje de máquina y de aprendizaje profundo que son adecuadas para este, pero en el último año uno de los modelos que va siendo reconocido cada vez más para ser aplicado a resolver problemas de procesamiento de lenguaje natural son los modelos basados en transformers dadas sus buenas capacidades y los resultados que se obtienen con estos. Ante dicha problemática surge la necesidad de investigar más acerca de cómo se vienen implementando soluciones para la realización de análisis de sentimiento para hacer una comparativa sobre los modelos usados y además dadas las buenas capacidades de los modelos basados en transformers investigar más a fondo la utilidad de estos y las aplicaciones que tiene para así comprobar sus buenas capacidades.Ítem Texto completo enlazado Aplicación de aprendizaje profundo para la detección y clasificación automática de insectos agrícolas en trampas pegantes(Pontificia Universidad Católica del Perú, 2021-09-30) Córdova Pérez, Claudia Sofía; Villanueva Talavera, Edwin RafaelLa horticultura es una actividad que da trabajo a muchos peruanos en distintas zonas del país, sin embargo, gran parte de la producción de hortalizas es dañada por la alta incidencia de plagas de insectos. En la actualidad, un método efectivo para realizar el control de estas plagas es el uso de trampas pegantes, las cuales atraen y atrapan distintos tipos de insectos. Convencionalmente, las trampas pegantes son colocadas de forma que queden distanciadas uniformemente en el campo donde se realiza el cultivo y luego de varios días se realizan observaciones visuales por parte del personal entrenado en reconocimiento de insectos. No obstante, la información recopilada manualmente por el humano puede no ser tan exacta, pues existen diversos factores que pueden influir en la precisión de esta, por ejemplo, la habilidad de cada persona para detectar distintos tipos de insectos y la posible fatiga que puede ser consecuencia de haber realizado un trabajo manual por mucho tiempo y para una muestra grande de insectos. Las soluciones que se encontraron en la revisión sistemática para tratar problemas de detección de insectos fueron algoritmos de segmentación con cambio de espacio de color, lo cual permite remover el fondo de una imagen y centrarse únicamente en el objeto de interés; también, se encontraron estudios que usaron modelos de detección, los cuales hacen uso de aprendizaje profundo con redes neuronales convolucionales para lograr la identificación de los insectos. Esta última técnica ha dado resultados óptimos en distintos problemas visión computacional, por lo que el presente proyecto de investigación propone usar los modelos de detección pre-entrenados Faster R-CNN y YOLOv4 y aplicarles aprendizaje por transferencia para ajustarlos al problema de detección de tres tipos de plagas de insectos: la mosca blanca, la mosca minadora y el pulgón verde del melocotonero en etapa de adulto alado. Para ello, se debe contar con un corpus de imágenes de trampas pegantes con insectos plaga y, debido a la limitada disponibilidad de estas, se planteó construir un generador de imágenes realistas de trampas pegantes con insectos, el cual tiene en consideración factores realistas como la iluminación y el nivel de ruido en las imágenes, además, se usaron técnicas de segmentación y aumento de imágenes de modo que el corpus obtenido sea el adecuado para la fase de entrenamiento. Finalmente, se midió la métrica mAP de ambos modelos para los tres tipos de insectos. El modelo Faster R-CNN obtuvo 94.06% y el modelo YOLOv4, 95.82%, donde se concluye que el desempeño de ambos detectores es aceptable.Ítem Texto completo enlazado Propuesta de mejora en el planeamiento de la producción de botellas aplicando un MPS y pronósticos basados en Deep Learning en una empresa productiva y envasadora de agua en el Callao(Pontificia Universidad Católica del Perú, 2021-05-05) Tupayachi Silva, José Alberto; Carbajal López, EduardoEn los últimos tres años el nivel de venta de agua embotellada para consumo humano en el Perú muestra un crecimiento en las ventas realizadas por las empresas productoras a los supermercados, bodegas, mercados y tiendas de conveniencias, esto se evidencia en el incremento del 3.9% de este sector productivo al cierre del 2017. La facturación de las grandes cadenas de supermercados a nivel nacional ha alcanzado los 14,000 000 PEN con un crecimiento del 5.3% respecto al año 2016. Esto demuestra que este sector económico está en crecimiento por el alto consumo de agua embotellada. La presente empresa a analizar se dedica a la producción de agua embotellada de marca propia y de maquila para sus principales clientes: Cencosud Retail S.A. y Supermercados Peruanos S.A., empresa joven y mediana con 43 trabajadores en planilla presente en el ámbito nacional, de importante participación en el mercado, que a partir del 2017 ha experimentado un fuerte crecimiento tras la priorización de la producción del cliente Supermercados Peruanos S.A en la presente empresa. Sus productos cuentan con 69% de participación a nivel supermercados y en el 2018 presenta un posicionamiento en el mercado que se encuentra dentro del 10.4%, compartiendo el mercado nacional con grandes embotelladoras como AB InBev, CBC Perú, Arca Continental e ISM, cabe resaltar que su portafolio de productos en primer trimestre del 2019 presenta la siguiente composición: Bells 48.04%, Wong 12.32%, Metro 28.11%, Selfie 11.53%. Lo cual representa un crecimiento en ventas respecto al trimestre anterior del 8%, el cual se provee ser mantenido. El aumento de pedidos de la presentación de 2.5L Bells, ha ocasionado que la falta de una planeación en la demanda y el incorrecto manejo de almacenes comiencen a generar problemas incumplimiento de pedidos, en promedio 17% entre los cuales se encuentran el abastecimiento incompleto a clientes, penalidades por entrega tardía, roturas en el stock de producto terminado, baja calidad del producto entre otros. El proceso critico de la empresa se presenta en las áreas de producción y logística. En primer lugar, actualmente se utilizan metodologías para el cálculo de la demanda que no corresponden a la realidad, dado esto, la producción se basa en los pedidos actuales. No se mantiene ningún pronóstico de la demanda útil para producción y se carece de un sistema de inventarios. Como resultado se genera que se incurra en el incumplimiento de los pedidos, acrecentado por el incremento de las ventas en estos últimos años. Se puede observar, según datos del último trimestre del año 2019 la cantidad de agua tratada requerida en diferentes presentaciones ascendió a la cantidad de: 538312.2 L. En segundo lugar, se evidencia de que existe una cantidad considerable de mermas en distintas fases del proceso productivo, se observa que la utilización del agua tratada tiene una eficacia de aproximadamente el 40%, para las etapas de llenado, sellado y empacado, existe un nivel de merma del 8.8% en promedio el cual comprende los recursos utilizados en cada etapa del proceso productivo respectivamente, dado al uso excesivo de las horas extras y de la utilización de los equipos hasta su falla . Se verifico que el número de horas extras por mes en el último trimestre del año 2019 alcanzo 628,5 horas extras en distintas posiciones, es decir se requiere de dichas horas adicionales para la culminación de los pedidos. Lo presente lleva a concluir que se debe plantear una reingeniería en la planificación, inventarios y ritmo de trabajo. Se propondrá solucionar los problemas actuales de la empresa mediante la implementación de un MPS Master Production Schedule a partir del análisis de la demanda apoyado por la aplicación de herramientas de analítica de datos con el cual se pretende implementar un modelo de Deep Learning LTSM y consecuentemente desarrollar una correcta planificación de la producción, establecer un sistema de inventarios y aumentar la productividad a través del TaktTime.