3. Licenciatura
URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/7312
Explorar
7 resultados
Resultados de búsqueda
Ítem Texto completo enlazado Diseño estructural de un edificio multifamiliar de 7 pisos ubicado en la ciudad de Arequipa(Pontificia Universidad Católica del Perú, 2024-08-27) Gomez Cordova, Giancarlo; Acero Martínez, José AlbertoEl presente proyecto consiste en la elaboración del análisis y diseño estructural de un edificio multifamiliar de concreto armado distribuidos en 7 niveles ubicado en el distrito de Cayma, Arequipa. La estructura contará aproximadamente un área techada de 3273.00 m2 y el terreno tiene una capacidad portante de 3.00 kg/cm2 Con respecto al sistema estructural, se contará con muros estructurales en los lados colindantes al área de los vecinos y en zonas donde la arquitectura lo permita, asimismo se hará uso de sistemas de pórticos en el interior de la estructura. El sistema de techado contará en su mayoría losas aligeradas en una dirección adecuadamente distribuidas, sin embargo, contará con losas macizas en zonas especiales como bordes de ductos y cerca al área del ascensor. Finalmente, la cimentación contará con zapatas aisladas, combinadas y conectadas. En primer lugar, se realizó la estructuración de la planta típica del edificio y el predimensionamiento de todos los elementos estructurales como vigas, columnas, placas y losas. Luego se inició con el metrado de cargas y se realizó el modelo con la ayuda del programa “Etabs”. Una vez definido el modelo, se procedió a realizar el análisis sísmico y dinámico siguiendo las recomendaciones de la Norma de Diseño Sismorresistente (NTE E.030-2018) para de esta forma tener definida las secciones de los distintos elementos estructurales. En segundo lugar, se realizó el diseño de los elementos estructurales siguiendo el marco normativo del Reglamento Nacional de Edificaciones (RNE), en el cual se encuentran la Norma de Concreto Armado (NTE E.060) y la Norma de Suelo y Cimentaciones (NTE E.050). De esta forma aseguramos cumplir con el diseño de capacidad para cada uno de los elementos estructurales. Finalmente, se brindaron algunas conclusiones de los resultados generales obtenidos y comentarios sobre algunos aspectos puntuales ocurridos en alguna de las etapas de desarrollo tales como predimensionamiento y diseño de los elementos estructurales.Ítem Texto completo enlazado Estudio de alternativas estructurales para el techado de un edificio de oficinas(Pontificia Universidad Católica del Perú, 2013-05-13) Pómez Villanueva, David Constantino; Ottazzi Pasino, Gian Franco AntonioEl presente trabajo consiste en el análisis y diseño estructural de un edificio de concreto armado de diez pisos, cada uno destinado a oficinas y de un área aproximada de 760 m2, ubicado en la ciudad de Lima. La estructura del edificio consta de dos grandes placas en forma de “C” que albergan las escaleras y ascensores del edificio en la zona central de la planta y columnas cuadradas en el perímetro de la misma. Las placas y las columnas están conectadas por vigas peraltadas. Un primer paso es el diseño, considerando sólo cargas por gravedad, de cuatro alternativas distintas de techado para las plantas del edificio. Se presenta el diseño de las cuatro alternativas de techado elegidas para la comparación, las vigas de cada alternativa, las placas, las columnas, la cimentación, las escaleras y la casa de máquinas. Se realiza el metrado de materiales y se calcula el costo de cada una de las cuatro alternativas diseñadas para, de entre ellas, escoger la más económica. Hecha la elección de la alternativa de techado a utilizar, se realiza el análisis sísmico de la estructura. Finalmente, con los resultados del análisis sísmico, se ajusta el diseño de los elementos previamente diseñados y se diseña los elementos restantes.Ítem Texto completo enlazado Diseño de un edificio aporticado con disipadores en arreglo Chevron(Pontificia Universidad Católica del Perú, 2013-04-30) Boza Farfán, Zuen Estefania; Galán Tirapo, Danny Jean; Muñoz Peláez, Juan AlejandroDurante terremotos severos, las estructuras pueden sufrir daños debido a las incursiones inelásticas que experimentan. Hoy en día existen en el mercado sistemas de aislamiento y disipación de energía que se instalan en los edificios con el fin de reducir el daño. Los sistemas de disipación de energía liberan la energía sísmica de entrada en forma de amortiguamiento, mientras que los sistemas de aislamiento sísmico permiten reducir la energía sísmica de entrada. En nuestro país se vienen desarrollando proyectos de edificios nuevos con aislamiento y disipadores de energía, lo cual de alguna manera ha motivado el presente estudio. En este trabajo se desarrolló el diseño del sistema de disipación de energía para un edificio aporticado de 7 pisos que tiene una deriva de entrepiso cercana al 1%, bajo las solicitaciones de la Norma Peruana de Diseño Sismorresistente. Se definió como objetivo de desempeño lograr que el edificio se comporte con daño moderado ante un sismo de 500 años de periodo de retorno. Para el sistema de pórticos empleado, la deriva asociada a este nivel de daño es cercana a 0.55%. El diseño del sistema de disipación se orientó a lograr que la deriva se mantuviera por debajo de este valor. Se estudiaron alternativas de arreglo Chevron para amortiguadores lineales y no lineales. La mejor alternativa consistió en 56 disipadores no lineales, dispuestos en todos los pisos. Con la solución obtenida se logró un amortiguamiento equivalente de 24 % y se logró reducir la deriva a 0.56%. Las fuerzas desarrolladas en los disipadores fueron del orden de las 50ton. Los resultados del presente trabajo indican que el sistema diseñado permitirá reducir la deriva en un 40%, y que el daño se mantendría, en teoría, por debajo del umbral de moderado frente a sismos raros (500 años de período de retorno). Es necesario que la actual Norma Peruana de Diseño Sismorresistente incluya un capítulo para el diseño los sistemas modernos de protección sísmica.Ítem Texto completo enlazado Protección de una edificación existente con disipadores de energía(Pontificia Universidad Católica del Perú, 2013-01-30) Morales Díaz, Luisa Joselinne; Contreras Bálbaro, Juan José; Muñoz Peláez, Juan Alejandro; Tinman Behar, MarcosEn la actualidad existen en el mercado dispositivos de disipación de energía que podrían ser empleados en el reforzamiento de edificaciones importantes en el país. En este trabajo se discuten los objetivos que debe alcanzar un proyecto de reforzamiento y se revisan las estrategias y técnicas utilizadas para el reforzamiento de edificaciones. Se hace una breve presentación de los dispositivos de disipación de energía y se explica el funcionamiento de los disipadores de fluido viscoso. Para estimar la respuesta dinámica de los edificios con sistemas de amortiguamiento, se explican procedimientos con análisis tiempo-historia y por medio de métodos espectrales. Se resume una metodología para desarrollar el reforzamiento de edificaciones empleando disipadores, y se desarrolla como ejemplo el diseño del sistema de protección para una edificación educativa. Los resultados del trabajo muestran que con el sistema de protección diseñado, la edificación estudiada podría alcanzar un amortiguamiento efectivo del orden del 25%, y la deriva y las solicitaciones internas se reducirían por un factor del orden de 0.6. El costo de los dispositivos para la edificación presentada se estimó en US$ 45 por metro cuadrado de área construida.Ítem Texto completo enlazado Diseño estructural de un edificio de vivienda, con un sótano y seis pisos, ubicado en Magdalena(Pontificia Universidad Católica del Perú, 2013-01-23) Tafur Gutiérrez, Aníbal; Blanco Blasco, Juan AntonioEl presente trabajo consiste en realizar el diseño estructural de un edificio de un sótano y 6 pisos, destinado a vivienda multifamiliar, ubicado en Magdalena del Mar, en la ciudad de Lima. El lote donde se construirá el edificio tiene un área total de 1,350 m2. El edificio consta de 22 departamentos, 2 en el primer piso y 4 en cada piso restante; además de 44 estacionamientos distribuidos en el sótano y en una playa de estacionamiento, ubicada en la parte trasera del primer piso. El suministro de agua se realizará mediante un sistema de cisterna y bomba hidroneumática, sin tanque elevado. La cisterna se ubica en el sótano del edificio. La profundidad de cimentación es variable, teniendo una profundidad máxima de -3.20 m. El suelo donde se cimentará la estructura tiene una capacidad admisible de 4 kg/cm2. El sostenimiento de taludes se realizará mediante calzaduras temporales de concreto ciclópeo. El sistema estructural del edificio está conformado por placas (muros de corte), columnas y vigas. Para los techos se usaron losas aligeradas armadas en un sentido y losas macizas armadas en dos sentidos, las cuales además funcionan como diafragmas rígidos en cada piso del edificio. La cimentación está conformada por zapatas aisladas, zapatas combinadas y cimientos corridos. Tanto el análisis como el diseño estructural se desarrollaron dentro del marco normativo del Reglamento Nacional de Edificaciones (RNE), y las Normas que lo componen. Se realizó el análisis sísmico para comprobar que el sistema sismorresistente del edificio cumpla con los requisitos especificados en la Norma E.030 del RNE, además se obtuvo las cargas sísmicas en cada elemento. El modelo sísmico se analizó con la asistencia de un computador, mediante el programa ETABS. Se analizaron las cargas de gravedad realizando el metrado de cargas para cada elemento y asignando dichas cargas al modelo estructural correspondiente. Las losas macizas y las zapatas combinadas se modelaron usando el método de elementos finitos FEM, con la asistencia del programa SAP2000. El diseño en concreto armado se realizó cumpliendo con lo especificado en la Norma E.060 del RNE, la cual se basa en el método de diseño LRFD (Load and Resistance Factor Design).Ítem Texto completo enlazado Análisis y diseño de estructuras con aisladores sísmicos en el Perú(Pontificia Universidad Católica del Perú, 2012-12-04) Korswagen Eguren, Paul Alexander; Arias Ricse, Julio César; Huaringa Huamaní, Pamela Grace; Montalbetti Solari, Juan AntonioLa aislación de edificaciones consiste en colocar una interfase flexible entre el suelo y la estructura de forma que se reduzcan considerablemente las solicitaciones sísmicas a las que ésta estaría sometida. Así, se puede optar por un diseño con un factor de reducción de fuerza sísmica menor y se puede obtener como resultado una edificación que no sufrirá daños y permanecerá totalmente operativa durante y después de un evento sísmico. Las reducidas aceleraciones también protegen a los elementos no estructurales y a los contenidos de la edificación. Los aisladores son dispositivos que cuentan con una elevada rigidez a cargas verticales, pero son flexibles frente a solicitaciones laterales. Por consiguiente, las fuerzas transmitidas a la estructura por un sismo severo generan desplazamientos del orden de 25 centímetros en la interfase de aislación, pero derivas significativamente menores en la superestructura. Esta tesis se enfoca en el uso de aisladores elastoméricos, los cuales aprovechan la flexibilidad de un material similar al caucho para conseguir una baja rigidez lateral, pero lo combinan con planchas de acero para elevar la rigidez vertical. Al realizar un análisis del comportamiento de diferentes tipos de estructuras con aisladores, se comprobó que ciertas estructuras se benefician de la aislación más que otras, siendo la esbeltez y el periodo de vibración los factores más influyentes. Como ventaja adicional a la reducción de las fuerzas, se ha encontrado, por ejemplo, que la aislación concentra la participación modal a sólo un modo por cada dirección, reduciendo así, la incertidumbre del comportamiento sísmico. Luego, se seleccionó una de las estructuras analizadas y se diseñó con el fin de observar las ventajas en el comportamiento estructural y diferencias en los costos. Se observó que el uso de concreto y acero en la superestructura disminuye, pero aumenta en la cimentación. En términos de costo, no se estima una reducción importante, sino un incremento debido a los aisladores. No obstante, deben cuantificarse los costos indirectos como las pólizas de seguros y el costo de cese de operación de una estructura esencial durante una emergencia como ventajas económicas. Finalmente, se incluye un detalle del procedimiento y recomendaciones para el diseño.Ítem Texto completo enlazado Diseño estructural de un edificio de viviendas de seis pisos ubicado en un conjunto habitacional en el distrito de Surco(Pontificia Universidad Católica del Perú, 2012-10-09) Guzmán Guillén, Laura Marina; Blanco Blasco, Juan AntonioEn el presente trabajo se ha desarrollado el análisis y diseño estructural de un edificio de 6 pisos de concreto armado, destinado a vivienda. Este edificio se encuentra ubicado en el distrito de Santiago de Surco en la ciudad de Lima sobre un terreno de capacidad portante de 4.0 kg/cm2 a 1.20m. de profundidad. El terreno cuenta con un área total de 414 m2. En la zona de estacionamiento se encuentra ubicada la cisterna y en la azotea el cuarto de máquinas y el tanque elevado. El edificio está estructurado sobre la base de muros de ductilidad limitada en ambas direcciones. El techo se ha resuelto con losas macizas de 13cm. y en algunas casos 20cm. en las zonas indicadas. No se ha considerado vigas peraltadas, debido a que los muros aportan suficiente rigidez a la estructura. Sólo se tiene vigas peraltadas en la llegada y salida de la escalera, y en la caja del ascensor. No se cuenta con dinteles de concreto armado en la zona de los vanos de las puertas ni de las ventanas pues éstos serán del material denominado drywall. Finalmente, se ha considerado un sistema de cimientos corridos conectados, para que éstos trabajen en conjunto. Para el análisis sísmico del edificio se han realizado dos modelos. En el primer modelo el edificio se analiza como un conjunto de placas unidas mediante un diafragma rígido y en el segundo modelo el edificio se analiza como dos bloques conectados por un diafragma flexible debido a la abertura que se presenta en planta en la zona central (zona de la escalera y ascensor). Para el análisis estructural se elaboraron modelos de elementos finitos usando el programa SAP 2000. El diseño de los elementos estructurales fue por capacidad última o rotura. El análisis y diseño se han realizado de acuerdo a los requerimientos del Reglamento Nacional de Edificaciones y de las Especificaciones Normativas para el Diseño Sismorresistente y de Concreto Armado para Edificaciones con Muros de Ductilidad Limitada. La resistencia a compresión del concreto para todos los elementos estructurales es de f`c = 210 Kg/cm2.