3. Licenciatura

URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/7312

Explorar

Resultados de búsqueda

Mostrando 1 - 2 de 2
  • Ítem
    Estudio numérico de la propagación de llamas en flujos confinados subsónicos y supersónicos
    (Pontificia Universidad Católica del Perú, 2024-08-27) Illacanchi Guerra, Fernando; Celis Pérez, César
    Dado que la aceleración de la llama determina las condiciones para el inicio de la detonación a través del fenómeno de transición de deflagración a detonación (DDT), la aceleración de la llama desempeña un rol crucial en diversas aplicaciones de la ingeniería, incluyendo los motores de detonación rotativos (RDE). En ese sentido, en el presente trabajo, para comprender la dinámica de propagación de llamas en regímenes subsónicos y supersónicos, dos dominios computacionales son estudiados: (i) canal sin obstrucciones y (ii) canal obstruido con obstáculos rectangulares distribuidos equidistantemente. Las simulaciones numéricas presentadas son obtenidas utilizando la herramienta computacional AMReX-Combustion PeleC, un solucionador numérico de flujos compresibles reactivos. En el primer dominio, la influencia de la condición de la pared en el régimen subsónico es explorado utilizando dos condiciones de pared diferentes: (i) adiabática antideslizante y (ii) adiabática de libre deslizamiento. En el segundo dominio, el efecto de diferentes ratios de obstrucción (BR) sobre la aceleración de la llama es analizado, así como su influencia en el inicio de la detonación a través del fenómeno DDT. El resultado de este trabajo muestra una diferencia sustancial en los mecanismos que controlan la propagación de llamas a diferentes regímenes de combustión. En régimen subsónicos, la condición de pared juega un papel crucial en la aceleración de la llama y la formación de la DTF, las cuales están también influenciadas por las ondas de presión reflejadas por las paredes, lo que conduce a inestabilidades tipo Rayleigh-Taylor (RT). En el régimen supersónico, los vórtices formados delante de los obstáculos incrementan el área de la llama, controlando así la dinámica de propagación de esta en las etapas iniciales. En las etapas posteriores, sin embargo, las ondas de choque son el principal mecanismo de aceleración de llamas, lo que conlleva a las inestabilidades de tipo Richtmyer-Meshkov (RM).
  • Ítem
    Análisis numérico de la estructura del flujo turbulento inerte en la estela cercana de un quemador tipo bluff-body circular usando herramientas computacionales de código abierto
    (Pontificia Universidad Católica del Perú, 2022-12-06) Franco Estrada, Ricardo; Celis Perez, Cesar
    El correcto modelamiento de flujos turbulentos representa un reto en la ingeniería hasta el día de hoy. El modelamiento de la combustión turbulenta resulta aún más complejo, debido a la interacción entre la cinética química y la turbulencia. El entendimiento del proceso de combustión turbulenta es clave en el desarrollo de quemadores, ya que deben ser diseñados para brindar una llama estable. Un mecanismo de estabilización ampliamente empleado es el de la llama recirculante. El propósito del presente trabajo es caracterizar numéricamente el flujo turbulento inerte presente en la estela cercana en un quemador tipo bluff-body utilizando herramientas CFD de fuente abierta. Los resultados numéricos son comparados y validados con mediciones experimentales realizadas en la PUC-Rio. Cuatro abordajes numéricos son estudiados: (i) Reynolds-averaged Navier-Stokes (RANS), (ii) Large Eddy Simulation (LES), (iii) Delayed Detached Eddy Simulation (DDES) e Improved DDES (IDDES). El primero consiste en resolver valores promedios de las cantidades físicas y modelar las varianzas. El segundo consiste en filtrar espacialmente y resolver directamente los vórtices turbulentos grandes, mientras que se modelan los más pequeños. El tercero y el cuarto están basados en una técnica híbrida entre RANS y LES. Para producir los resultados numéricos LES, DDES e IDDES se realizan promedios tanto temporales como espaciales en la dirección azimutal para reducir el costo computacional de las simulaciones, aprovechando la simetría del flujo alrededor del eje. Luego, la sensibilidad a la malla es evaluada utilizando el método de autocorrelaciones espaciales, nuevamente aplicando un promedio azimutal. Estos promedios implican una transformación de coordenadas de cartesianas a cilíndricas. Finalmente, los resultados finales muestran que la técnica más apta para este caso es el LES, seguido por las técnicas híbridas. Si bien el abordaje RANS muestra un acercamiento cualitativo a los campos de velocidad experimental, este se aleja en la estructura turbulenta del flujo, siendo el que más diverge de los resultados experimentales.