3. Licenciatura
URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/7312
Explorar
1 resultados
Resultados de búsqueda
Ítem Texto completo enlazado Algoritmo para el balanceo dinámico del grado de dificultad mediante aprendizaje de máquina en la implementación de un juego orientado a apoyar el desarrollo de la inteligencia espacial en niños de etapa pre-escolar(Pontificia Universidad Católica del Perú, 2018-03-27) Caballero Torres, Franco André; Beltrán Castañón, César ArmandoDentro del ámbito educativo nacional, la Inteligencia espacial, a pesar de haber demostrado estar relacionada con una serie de habilidades que permiten y estimulan la creación y el desarrollo matemático y científico, no es muy reconocida y posee pocas herramientas que ayuden a su desarrollo en niños de edad preescolar, etapa en la que este se recomienda ampliamente. Sumado a esto encontramos la necesidad de herramientas que contribuyan en la enseñanza cuyos requerimientos han crecido en cantidad y complejidad en las últimas décadas, y que involucren modos innovadores de llevar el conocimiento aprovechando las tecnologías disponibles. La necesidad de contribuir con la educación también surge de los requerimientos del Aprendizaje Adaptativo, el cual es una metodología que, a través de la adecuación del nivel del contenido que se desea enseñar, permite al estudiante una experiencia de aprendizaje personalizada y más efectiva en resultados. Esta metodología aprovecha las posibilidades de interacción que proporcionan las tecnologías de información y la capacidad de procesamiento de los equipos informáticos para lograr su objetivo. La presente tesis describe el desarrollo de una aplicación educativa gamificada de apoyo en el desarrollo de la Inteligencia espacial en niños de etapa preescolar, e involucra el uso de tecnologías que permitan adaptar al estudiante la dificultad del juego presentado por el aplicativo. Para esto se hizo uso de métodos de Ajuste Dinámico de la Dificultad, a través de redes neuronales y aprendizaje supervisado. El entorno de juego está basado en el uso de representaciones virtuales de bloques lógicos, mediante los cuales se le presenta al alumno una figura la cual este debe imitar manipulando, mediante la pantalla táctil, otro conjunto bloques similares. Se evaluaron siete métricas en el desempeño del usuario relacionadas a cuan correcta es su respuesta en los siguientes conceptos: Encaje, ubicación, forma, tamaño, color, rotación y textura. Mediante estas métricas la aplicación elige el siguiente escenario a presentar al usuario ajustando diez atributos en dicho escenario. El proceso de adaptación busca introducir las métricas del usuario a un rango de acierto deseado y se realiza en dos pasos. Primero, se realiza sin presencia del usuario un entrenamiento de redes neuronales mediante propagación hacia atrás con información de casos base. Este primer paso permite obtener una versión inicial de la adaptabilidad. Y segundo, luego de cada ronda, se evalúa la respuesta del usuario mediante un conjunto de eventos que determinan la efectividad de la red neuronal para introducir a un usuario especifico al rango deseado, y se modifica la red usada para ese usuario con los resultados obtenidos. En los resultados del proyecto se observó que la metodología empleada es efectiva para el caso propuesto, logrando introducir las métricas en el rango luego de un número de rondas jugadas. La evaluación de requerimientos computacionales (velocidad, efectividad, robustez y eficiencia) y funcionales (claridad, variedad, consistencia y escalabilidad) para una AI adaptativa también muestra resultados positivos. Sobre la rapidez de la solución, la respuesta para ambos modelos (solo entrenamiento inicial y modificación por eventos) es imperceptible para el usuario. En cuanto eficacia se logró resultados positivos, logrando mejorar las métricas respecto a un algoritmo manual en más del 70% de los casos y obteniendo un aumento promedio comparándola a un algoritmo manual de +0.012 para las redes neuronales y +0.02 para el aprendizaje supervisado. Estos valores representan el 13% y el 22% de la máxima mejora posible respectivamente. En cuanto a la robustez y eficacia, ambos modelos lograron adaptar la respuesta al usuario en la mayoría de casos y en un número similar de rondas, aunque el aprendizaje supervisado mostró ser más efectivo en el primer criterio, mejorando los resultados del algoritmo manual. Respecto a la variedad de los escenarios presentados se obtuvo, mediante la modificación por eventos, una menor variación entre estos, lo que se relaciona con la mejor adaptabilidad alcanzada. Y sobre la escalabilidad, ambos modelos mostraron resultados positivos para los tres niveles de desempeño evaluado, aunque el aprendizaje supervisado muestra ser más efectivo. Estos resultados permiten identificar beneficios en el uso de esta metodología específicamente para el ámbito evaluado, así como identificar en qué casos específicos es más efectiva. Los resultados positivos encontrados que en conjunto indican que se ha logrado realizar una aplicación que cumple en presentar al usuario un entorno adaptativo, hacen válido el seguir este camino para futuras investigaciones en la exploración de las aplicaciones gamificadas educativas de apoyo a la inteligencia espacial.