Facultad de Ciencias e Ingeniería

URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/9119

Explorar

Resultados de búsqueda

Mostrando 1 - 2 de 2
  • Ítem
    Aplicación de un diseño experimental factorial en el estudio de la adsorción de fenol y nitrofenoles con nanofibras de carbono
    (Pontificia Universidad Católica del Perú, 2015-12-10) Beltrán Suito, Rodrigo; Sun Kuo, María del Rosario
    El objetivo principal de la presente investigación fue el estudio de la adsorción de fenol, 2-nitrofenol, 4-nitrofenol y 2,4-dinitrofenol con nanofibras de carbono (CNF) como adsorbente mediante el uso de un diseño experimental aplicando el modelo factorial de Box Wilson. El uso de este modelo permitió estudiar el efecto en conjunto de diferentes variables (pH, fuerza iónica y concentración inicial del adsorbato) y encontrar las condiciones óptimas para la adsorción. Las CNF fueron sintetizadas por el método CVD utilizando una mezcla de etileno e hidrógeno en un reactor tubular de lecho fijo empleando un catalizador de Ni/SiO2 por 4h a 873K. El material adsorbente (CNF) fue caracterizado mediante diferentes técnicas instrumentales: ATR, FTIR, DRX, SEM, EDX, sorción de N2, titulación Boehm y pHPZC. El análisis por DRX permitió la determinación de las fases cristalográficas en la estructura y la naturaleza grafítica del material. Se encontraron dos picos representativos de planos grafíticos (d101, 44,52° y d002, 25,76°). La titulación Boehm permitió determinar los grupos ácidos superficiales: fenólicos 12,22±0,28 mmolH+/gCNF, lactónicos 6,47±0,12 mmolH+/gCNF y carboxílicos 0,89±0,17 mmolH+/gCNF. La espectroscopia infrarroja (FTIR) permitió identificar los grupos funcionales. El análisis por SEM mostró que las nanofibras se encuentran aglomeradas, sin un ordenamiento aparente, relacionado posiblemente con la alta temperatura empleada en la síntesis (600°C). El análisis elemental realizado (EDX) indica la presencia de solo dos elementos: C (96,4%) y Ni (3,36%), éste último relacionado con el catalizador empleado en la síntesis. Mediante la sorción de N2 se determinó que las CNF tenían un área superficial de 120m2.g-1. Las CNF resultaron ser mayoritariamente micro-mesoporosas, lo que podría favorecer la adsorción de moléculas grandes como el fenol y los nitrofenoles. La isoterma de adsorción de N2 fue de tipo IV, según la clasificación IUPAC, típica de materiales carbonosos. El punto de carga cero encontrado fue de 6,5. El estudio de la cinética de adsorción permitió determinar los tiempos de equilibrio que fueron: 250min para fenol, 300min para 4-nitrofenol y 2,4-dinitrofenol y 400min para 2-nitrofenol. Se aplicó el diseño experimental en base al modelo factorial de Box-Wilson con dos variables (pH y fuerza iónica) y tres variables (pH, fuerza iónica y concentración inicial de adsorbato). A partir de los ensayos propuestos por el diseño factorial se obtuvieron ecuaciones de regresión (funciones de respuesta) de dos y tres variables utilizando el software estadístico JMP® 7.0.1. En base al análisis matemático de estas funciones, se determinó que las condiciones de máxima adsorción para todos los adsorbentes fueron pH = 1 y 20%NaCl. Las condiciones medias fueron pH = 7 y 10%NaCl y las condiciones menos favorables fueron pH = 13 y 0%NaCl. A partir de estas condiciones se realizaron las isotermas de adsorción. Utilizando el software de química computacional HyperChemTM 8.0.3 se realizaron los cálculos de densidad electrónica para los adsorbatos de estudio bajo diferentes condiciones de pH. Se encontró que, para todas las especies adsorbidas, las condiciones ácidas aumentan la electrofilicidad del anillo aromático por una disminución de la densidad electrónica en él mismo. Además, la sustitución de un grupo nitro (NO2) en la estructura lleva a un aumento de la electrofilicidad (disminución de la densidad de carga en el anillo) por su carácter atractor, lo que se tradujo en un aumento de la adsorción. Así mismo, para elucidar el posible mecanismo de adsorción se determinaron las isotermas de adsorción. Los resultados experimentales se correlacionaron con seis modelos de isotermas: Freundlich, Langmuir, Elovich, Temkin, Redlich-Peterson, Dubinin-Radushkevich. En general, se encontró que la adsorción se produce en centros activos con una superficie mixta y con una distribución homogénea de energía. El orden descendente obtenido en relación con a la capacidad de adsorción promedio fue: 2,4-dinitrofenol > 4-nitrofenol > 2-nitrofenol > fenol. Este orden se explica mediante el efecto del pH y la fuerza iónica en la adsorción. El pH tiene el efecto de protonar/desprotonar al adsorbato y este hace variar la electrofilicidad que es determinante en la adsorción. Por otro lado, la fuerza iónica está relacionada con el efecto de “salting out”, que hace cambiar la solubilidad de los adsorbatos debido a la presencia de electrólitos en solución.
  • Ítem
    Estudio de la dinámica de la degradación de hojarasca en bosque tropical amazónico utilizando marcadores químicos de descomposición
    (Pontificia Universidad Católica del Perú, 2015-08-11) D'Acunha Sandoval, Brenda Melissa; Cosio Caravasi, Eric Gabriel
    El ciclo de carbono en un bosque tropical se completa por la labor de descomposición que llevan a cabo los organismos detritívoros en el suelo del bosque. Estos actúan sobre el mantillo de hojas, ramas y troncos que se acumulan en el suelo. Dependiendo de la composición del bosque, estas tasas varían, y algunos de los factores determinantes más importantes para ver cuánto demora este proceso son el contenido de fenólicos totales, la proporción de carbono-nitrógeno y los tipos de lignina presentes. Se han realizado numerosos estudios sobre las tasas de desaparición de biomasa y análisis simples de contenidos de distintos indicadores en mantillo pero la dinámica de estos procesos de degradación, así como los principales componentes e intermediarios de la misma, aún están en proceso de caracterización. Un buen entendimiento del balance de carbono en todo el sistema es crítico para poder determinar su papel en el cambio climático, ya sea como amortiguadora del mismo, o agravando el problema. En particular, para poder realizar esto, es necesario cuantificar los flujos dominantes de salida y entrada de los grandes almacenes de carbono y el control ambiental de estos flujos. Estos esfuerzos en las diferentes determinaciones dependen, principalmente, de modelos predictivos para lo cual, a su vez, se necesitan estimaciones adecuadas de los principales procesos biológicos del ciclo de carbono como son: la absorción de carbono por fotosíntesis, el crecimiento de las plantas y la degradación de las mismas. Es por ello que este trabajo de investigación tuvo como fin, mediante técnicas analíticas, caracterizar la descomposición de mantillo en bosque evaluando los diferentes marcadores de degradación y ver cómo estos cambian en el tiempo durante el proceso de descomposición. Es así que se estudió la descomposición de dos especies arbóreas de alta importancia biológica: Calophyllum brasiliense Cambess y Bixa arborea Huber mediante la técnica de bolsas de descomposición. Estas fueron dejadas en el suelo del bosque de la Reserva Nacional Tambopata y recolectadas en períodos definidos para luego analizar el contenido de fósforo, calcio, polifenoles totales, taninos condensados, celulosa, hemicelulosa, lignina, carbono y nitrógeno y ver la correlación de cada parámetro con la velocidad de degradación del material vegetal. Se encontraron diferencias significativas en la química de ambas especies, así como en las constantes de descomposición. Se espera que estos resultados puedan ser utilizados en futuras investigaciones y modelos de flujo de carbono en bosques para así tener un mejor entendimiento del balance de carbono y nitrógeno y su papel en el cambio climático.