Facultad de Ciencias e Ingeniería

URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/9119

Explorar

Resultados de búsqueda

Mostrando 1 - 1 de 1
  • Ítem
    Metodología de optimización numérica multi-objetivo y de simulación numérica de la interacción fluido-estructura del desempeño de un agitador con impulsor PBT variando ángulo, altura y velocidad de rotación utilizando ANSYS CFX, MECHANICAL y DESIGN EXPLORER
    (Pontificia Universidad Católica del Perú, 2013-09-16) Arrieta Valderrama, Gustavo Andrés; Valverde Guzmán, Quino Martín; Yépez Castillo, Herbert
    Los tanques agitadores son ampliamente utilizados en diferentes industrias, en donde la eficiencia de las operaciones de mezclado tiene un impacto tanto en los costos como en la calidad del proceso, si a esto se le añade que para poder mantener la competitividad en el mercado, el tiempo de desarrollo del producto debe ser el menor posible y a un bajo costo, por ese motivo es necesario optar por nuevas formas para realizar nuevos diseños. En muchas empresas fabricantes de gran envergadura, el uso software de optimización se está convirtiendo en una herramienta ideal para conseguir estos objetivos. En este trabajo se utilizó las herramientas computacionales ANSYS CFX, MECHANICAL y DESIGN EXPLORATION para realizar una metodología que permita realizar la simulación numérica tanto a nivel de fluidos y estructural como para realizar la optimización de un modelo de tanque agitador. Para la elaboración de este procedimiento se optó por variar en un rango determinado ciertos parámetros geométricos y de funcionamiento. En el estudio fluido dinámico se trabajó tres fluidos: agua, metanol y aire, en donde los dos primeros se modelaron como “multicomponentes” es decir como fluidos miscibles, mientras que la interacción con el aire se modelo como “superficie libre”. Para esto, se utilizó el modelo de turbulencia SST (Shear Stress Transport), el cual demostró en un estudio anterior ser el que más se ajusta al ser contrastado con resultados experimentales, además se empleó los modelos de “marco de referencia móvil (MRF)” y de “Frozen Rotor” para tratar la interacción entre las partes móviles (rotor) y partes estáticas (tanque y deflectores). Para el análisis estructural se utilizó la metodología de interacción fluido-estructura (FSI) del tipo “unidireccional (one-way)” para determinar los esfuerzos y deformaciones en cada diseño. Finalmente, se utilizó el método de la superficie de respuesta (RSM) como base para la optimización, donde se utilizó un algoritmo estocástico (MOGA) como buscador de soluciones óptimas en el modelo del tanque agitador parametrizado, el cual consta de tres variables de entrada (ángulo de alabe, altura de impulsor y velocidad de rotación) y dos funciones objetivos: maximizar grado de mezcla y minimizar la potencia consumida. El presente estudio demuestra que la velocidad y el ángulo son los parámetros más incidentes en las funciones objetivas mencionadas anteriormente y que al variar estos parámetros se pueden obtener mejoras significativas en los resultados. En este estudio en particular se encontró que el ángulo de 60 grados y una altura de 300mm con respecto al tanque, mejora en un 8% y 36% el consumo de potencia y grado de mezcla respectivamente, para las configuraciones del tanque dadas.