Facultad de Ciencias e Ingeniería

URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/9119

Explorar

Resultados de búsqueda

Mostrando 1 - 3 de 3
  • Ítem
    Diseño de un sistema mecatrónico para medir el nivel de fatiga neuromuscular en deportistas utilizando el salto en contramovimiento
    (Pontificia Universidad Católica del Perú, 2022-08-03) Rojas Carrasco, Ivan Alexis; Villota Cerna, Elizabeth Roxana
    Hoy en día, es evidente el crecimiento de la práctica deportiva en el Perú. De hecho, esta actividad se ve impulsada por la infraestructura y la moderna tecnología deportiva implementada con miras a los Juegos Panamericanos Lima 2019. Sin embargo, si bien estos complejos poseen la ventaja de beneficiar a la mayor cantidad de atletas por su capacidad, la tecnología no se proyecta de la misma manera debido a la aún limitada oferta existente. Ante este panorama, resulta importante identificar una oportunidad de mejora que pueda reducir la brecha tecnológica que existe en el deporte peruano. Por esto, se propone diseñar una solución tecnológica que optimice el proceso de control de la fatiga neuromuscular (FN) durante la preparación deportiva. Sobre el control de la FN, existen alrededor de 6 métodos convencionales para medir el nivel de la fatiga. Algunos de estos, recientemente, han variado con el fin de reducir su complejidad. Prueba de ello es un nuevo estudio que ha demostrado que la altura máxima del centro de masa en el salto en contramovimiento (CMJ, por sus siglas en inglés) puede ser utilizado como una herramienta moderna y práctica para determinar el nivel de la FN. Entonces, con base en este método, se propone diseñar un sistema mecatrónico que obtenga el nivel de dispersión de la potencia mecánica máxima del CMJ, variable física directamente relacionada con la altura del centro de masa, para que se utilice como herramienta para medir el nivel relativo de la FN. Así mismo, el sistema a diseñar debe ser capaz de verificar la ejecución del CMJ. El sistema mecatrónico se compone de un subsistema que utiliza 8 celdas de carga para medir las fuerzas pie-piso y un segundo subsistema compuesto de una cámara digital para la captura de imágenes que corresponden al desarrollo del CMJ. Luego, para el procesamiento de los algoritmos que culminan en el nivel de dispersión de la potencia mecánica máxima se emplea un microcontrolador; y para el procesamiento de las imágenes que culminan en la verificación del CMJ, un mini ordenador. Al respecto, el procesamiento de imágenes comprende, principalmente, la etapa de reconocimiento de articulaciones en el espacio 2D. Para esto, se utiliza el modelo Open Pose de tipo open source, que fue elegido por su precisión (79.7 %), tiempo de detección (< 0.20 s) e implementación. La presente inicia revisando el estado del arte, luego se define la lista de requerimientos, estructura de funciones, matriz morfológica y conceptos preliminares según la norma VDI 2221. También, se revisa el diseño del sistema dentro del ámbito mecánico, eléctrico y procesamiento. Al final, se revisa la parte de costos y conclusiones.
  • Ítem
    Diseño de un sistema ciber-físico para monitorizar variables relacionadas con derrames de líquidos de gas natural en el sistema de transporte por ductos del proyecto camisea
    (Pontificia Universidad Católica del Perú, 2022-04-19) Jacinto Calderon, Cristhian Gustavo; Villota Cerna, Elizabeth Roxana; Santos López, Félix Melchor
    Durante los 18 años de operación del Proyecto Camisea se han registrado 13 fallas en los sistemas de transporte por ductos de líquidos de gas natural (LGN). Muchas de estas fallas son producto del movimiento lento de suelos, las infiltraciones de agua o la perforación intencional de los ductos. Sea cual fuere la causa, muchas veces ocurre que las fallas terminan no siendo identificadas por el sistema de detección de fugas y derrames SCADA de la empresa transportadora (TgP). El objetivo del presente proyecto es evaluar la factibilidad de diseñar un sistema ciber-físico que permita identificar derrames de pequeña magnitud a lo largo del poliducto de LGN, a la vez que alerte en caso de derrame tanto a la empresa transportadora como a los organismos técnicos supervisores y fiscalizadores (como el OEFA y Osinergmin). Contar con un sistema como el descrito, permitirá que se tomen acciones inmediatas tal que se consiga reducir drásticamente tanto el impacto ambiental como el socioeconómico. Con este fin, la pregunta de investigación es la siguiente: ¿de qué manera se podrían vincular las tecnologías de la información y la comunicación con los procesos físicos tal que se puedan monitorizar las variables relacionadas con los derrames de LGN? En este contexto, se debe tener en cuenta que el bajo porcentaje de falsas alarmas es una medida para que un sistema de monitorización de derrames sea considerado eficiente. La pregunta de investigación se responde a través del diseño de un sistema ciber-físico que implica la interacción de: (i) un sistema físico, diseñado según la norma de diseño alemana VDI 2221 y (ii) un sistema ciber, diseñado de acuerdo al proceso de diseño “Attribute-Driven Design 3.0” del Instituto de Software de la Universidad de Carnegie Mellon. El sistema físico consiste en un conjunto de estaciones de monitoreo que cumple con términos de referencia dados por Osinergmin, y presenta una configuración redundante en el suministro de energía, para alimentar en todo momento a dispositivos electrónicos, entre los que destacan sensores no intrusivos, acondicionadores de señales, y un microcontrolador. Estos dispositivos, en conjunto, se encargan principalmente de la adquisición y transmisión de los datos relacionados con derrames de LGN hacia el sistema ciber. El sistema ciber consiste en una arquitectura de Cloud computing, diseñada en base a los principales casos de uso identificados, escenarios de atributos de calidad, restricciones y preocupaciones arquitecturales. Las funciones del sistema ciber son recibir y procesar las tramas de datos, notificar al sistema físico en caso de un derrame y presentar el proceso de monitoreo a través de una plataforma cloud. De esta manera se obtiene como resultado un sistema integrado que genera las condiciones para detectar derrames y establecer alertas a tres niveles: in situ, a través de SMS y a través de la plataforma cloud.
  • Ítem
    Diseño de un controlador descentralizado adaptable al sistema de semaforización de Lima Metropolitana para la optimización de tiempos de los ciclos semafóricos en tiempo real
    (Pontificia Universidad Católica del Perú, 2021-11-10) Montoya Calderón, Andrée Yordan; Villota Cerna, Elizabeth Roxana
    Actualmente, un problema que afecta a toda la población de la ciudad de Lima Metropolitana es la congestión vehicular, en donde una de las causas principales es el sistema de semaforización. A la fecha, el 67% de semáforos de la ciudad no están interconectados y son del tipo presincronizado, es decir, cambian el color de luz de acuerdo a un tiempo preestablecido; mientras que en el 33% de semáforos restantes, que se encuentran interconectados formando una red, el control se encuentra a cargo de cierto personal que actúa, únicamente, en momentos críticos. Si bien se puede decir que Lima cuenta con un sistema de semaforización, este no llega a ser el adecuado debido a que no puede adaptar su comportamiento en tiempo real para reducir la congestión vehicular. Aún más, algunas acciones tomadas, tales como el apoyo policial y la implementación de las denominadas “olas verdes”, pueden no presentar buenos resultados e incluso generar mayores problemas de tráfico debido a que no son acciones óptimas, puesto que son tomadas bajo criterio de agentes policiales u operarios, quienes cuentan con conocimiento limitado del entorno en tiempo real. De esta manera, se propone una solución para las intersecciones semafóricas que actualmente no se encuentran interconectadas a fin de optimizar los tiempos de los ciclos semafóricos según el estado de tráfico en tiempo real, con el objetivo de minimizar el volumen vehicular, bajo un modelo edge computing. Así, el presente trabajo desarrolla el diseño de un controlador descentralizado, como base de la solución propuesta, buscando aprovechar algunos recursos y componentes propios de las intersecciones, tales como los semáforos y las conexiones bajo tierra entre estos y el controlador. Cabe mencionar, que la solución también podría ser adaptada para usarse en las intersecciones interconectadas. El diseño del controlador incluye el diseño del algoritmo de control, el cual estará basado en una política de asignación proporcional generalizada que no requiere de información de otras intersecciones para el cálculo de tiempos de una intersección. El impacto del algoritmo de control se evaluará comparando sus resultados con los del sistema de semaforización actual en un ambiente de simulación, en donde se implementará el sistema de tráfico vehicular correspondiente a un caso de estudio. El diseño físico del controlador, el cual contempla el diseño electrónico y mecánico, e incluye los cálculos para la selección de componentes, así como las conexiones entre estos y protocolos de comunicación, también forma parte del trabajo.