Facultad de Ciencias e Ingeniería
URI permanente para esta comunidadhttp://54.81.141.168/handle/123456789/9119
Explorar
2 resultados
Resultados de búsqueda
Ítem Texto completo enlazado Diseño e implementación de un módulo de monitoreo cardíaco portátil para zonas rurales(Pontificia Universidad Católica del Perú, 2018-08-29) Yupanqui Lizana, Jaqueline Raquel; Roncal Loyola, Sofía Marisol; Carrera Soria, Willy Eduardo; Castañeda Aphan, BenjamínSegún la Organización Mundial de Salud (OMS) en el año 2015, de las 56.4 millones de defunciones registradas la causa principal fueron las cardiopatías isquémicas y los accidentes cerebrovasculares. En el mismo año, estableció como umbral mínimo la cantidad de 23 profesionales (médicos y enfermeras) por cada 10 000 habitantes. En el Perú, las muertes por enfermedades al corazón ocupan el segundo puesto de las causas de muerte más comunes con un 10.5% de la tasa de mortalidad. Asimismo según datos recabados del Instituto Nacional de Estadística e Informática (INEI) y el Ministerio de Salud (MINSA) en el año 2014, se cuenta con 26 profesionales de la salud por cada 10 000 habitantes con lo que se logra cumplir con lo recomendado por la OMS. Sin embargo, en algunos departamentos como por ejemplo Cajamarca, Piura y San Martín dicha relación no se cumple teniendo cada una 16,13 y 12 profesionales de la salud por cada 10 000 habitantes respectivamente. Además, se debe considerar que para el monitoreo de los pacientes en hospitales y centros de salud se requiere de un equipo médico de alto costo, el cual solo puede ser usado por personal médico capacitado. Debido a lo expuesto previamente, la presente tesis plantea el diseño e implementación de un módulo de monitoreo portátil cardiaco para zonas rurales, el cual realiza la adquisición de la señal electrocardiográfica de una derivación en pacientes que se encuentren en estado de reposo, la cual podrá ser observada en una aplicación para computadora. El módulo desarrollado está dividido en dos etapas. La primera etapa consiste en un circuito de adquisición y acondicionamiento de la señal ECG. Para la adquisición de dicha señal se colocarán tres electrodos al paciente, estos estarán conectados al módulo mediante cables apantallados, cuya función es reducir la interferencia electromagnética o el ruido generado por el movimiento de los cables. Además, se trasmitirán los datos adquiridos en esta etapa vía bluetooth a una computadora. La segunda etapa recibirá los datos previamente mencionados en una plataforma gráfica instalada en la computadora la cual contiene tres ventanas. La primera ventana se utiliza para acceder a la ventana de registro de datos y monitoreo ECG. La segunda ventana servirá para realizar el registro de los datos tanto del paciente como del operario. La tercera ventana, monitorea la señal ECG la cual mostrará el ritmo cardiaco y el número de pulsaciones por minuto a tiempo real que luego podrán ser exportados a un archivo Excel. Además, se agregó una funcionalidad para poder exportar los datos a una página web. Las pruebas del funcionamiento del módulo con las tarjetas ya integradas se realizaron en personas mayores de 18 años. De los resultados obtenidos en la etapa de validación se observa un error de 0.54%, lo cual se encuentra dentro del rango aceptable establecido en ANSI/AAMI EC 13:2002.Ítem Texto completo enlazado Generación de patrones de interferencia utilizando sonoelastografía cuantitativa bajo el principio de holografía(Pontificia Universidad Católica del Perú, 2018-02-15) Arroyo Barboza, Johnny Junior; Castañeda Aphan, BenjamínPor lo general, la presencia o aparición de ciertas enfermedades está relacionada a la variación de las propiedades mecánicas (en particular, elásticas) del tejido blando. Entre las técnicas de caracterización de estas propiedades se encuentra la Sonoelastografía Cuantitativa, la cual se ha venido desarrollando en el Laboratorio de Imágenes Médicas de la PUCP, y cuyo funcionamiento está basado en la aplicación de vibraciones mecánicas de baja frecuencia sobre el tejido, con la finalidad de analizar la forma de propagación de la excitación inducida y caracterizar de manera cuantitativa las propiedades mecánicas mostradas. Inicialmente se emplearon dos técnicas sonoelastográficas: Sonoelastografía de Crawling Waves (CWS) y Holografía de Onda de Corte (SWH), las cuales fueron aplicadas sobre un maniquí homogéneo de 10 % de concentración de gelatina y sobre uno de 15% de concentración de gelatina, estimando la velocidad de onda de corte en ambos maniquíes, así como la desviación estándar. A continuación se propone la Sonoelastografía por Holografía Digital (DHS), una técnica que presenta un esquema experimental sencillo, con menor instrumentación y por ende con potencial para aplicaciones in vivo, a diferencia de las dos técnicas previamente analizadas. Se diseña un algoritmo para la formación de patrones de interferencia, a partir de los cuales se estimó la velocidad de propagación y la desviación estándar de un maniquí de 10% de concentración de gelatina y otro de 15% de concentración. Por último, se comparan los resultados obtenidos con las tres técnicas, usando al tiempo de vuelo para poder calcular un valor de velocidad de referencia. Para el caso del maniquí de 10% de concentración, el valor de referencia es de 2.0064 m/s, con CWS se obtuvo 2.0111 ± 0.0383 m/s, con SWH 1.9167 ± 0.0477 m/s y con DHS 2.1067 ± 0.0691 m/s. Por otro lado, para el maniquí de 15% de concentración se obtuvo un valor de referencia de 2.7916 m/s, con CWS se obtuvo 2.8170 ± 0.0565 m/s, con SWH 2.8560 ± 0.1600 m/s y con DHS 2.1449 ± 0.0957 m/s. Para cuantificar la precisión de la estimación se calculó el error relativo entre el resultado obtenido con la técnica propuesta DHS y valor de referencia en cada caso. De esta manera, el error fue de 4.99% en el caso del maniquí de 10% de concentración, mientras que en el maniquí de 15% fue de 23.16%. En tal sentido, se concluye que la técnica realiza una adecuada estimación de velocidad de corte para maniquíes de baja concentración, pues a medida que la concentración aumenta el error en la estimación también lo hace.