Enseñanza de las Matemáticas

URI permanente para esta colecciónhttp://54.81.141.168/handle/123456789/9074

Explorar

Resultados de Búsqueda

Mostrando 1 - 1 de 1
  • Ítem
    Estudio de la circunferencia desde la geometría sintética y la geometría analítica, mediado por el geogebra, con estudiantes de quinto grado de educación secundaria
    (Pontificia Universidad Católica del Perú, 2016-04-20) Echevarría Anaya, Julio Antonio; Gaita Iparraguirre, Rosa Cecilia
    La presente tesis tiene como objetivo analizar los resultados que se tiene en los aprendizajes al abordar un problema sobre circunferencia desde los cuadros de la geometría sintética y geometría analítica. Se espera que el tránsito entre estos dos cuadros favorezca la comprensión del objeto. Para el estudio se ha tomado como base la Teoria de Juego de cuadros, en donde se describen fases por las cuales los estudiantes deben transitar para que las interacciones entre cuadros permitan el progreso de los conocimientos. De otro lado, como referencial metodológico se han considerado aspectos del Estudio de Casos. Así, nos planteamos la siguiente pregunta de investigación: ¿Qué resultados se tendrá en los aprendizajes de los estudiantes el abordar problemas sobre circunferencia desde la geometría sintética y también desde la geometría analítica, y de qué manera el uso del GeoGebra contribuirá a que los estudiantes establezcan conexiones entre estos dos cuadros de la matemática? Con esta investigación se logró identificar una actividad sobre circunferencia que podía ser abordada desde la geometría sintética y también desde la geometría analítica. En cada uno de dichos cuadros, se tendría que hacer uso de procedimientos propios particulares; así, mientras que desde la geometría sin coordenadas prevalecerían las construcciones exactas, desde la geometría analítica, la solución del problema se basaría en resolver sistemas de ecuaciones. Así mismo, el empleo del software GeoGebra permitió que los estudiantes pudieran comprobar los resultados obtenidos en ambos cuadros, logrando que se centraran en las ideas centrales y no se perdieran con los cálculos. De otro lado, también se confirmaron las fases propuestas en la teoría de juego de cuadros durante el proceso de cambio de cuadros. Así, se produjeron desequilibrios al no tener la seguridad de resolver un problema, y luego se recurrió a la ayuda de otro cuadro, produciendose un reequilibrio de lo aprendido; dicha acción que realizan produce una conexión entre cuadros llamado también juego de cuadros que le ayudan a tener seguridad en resolver problemas de geometría. Se puede concluir que esta investigación contribuyó a que los estudiantes establecieran conexiones entre los cuadros de la geometría sintética y la geometría analítica.