Ingeniería (Dr.)

URI permanente para esta colecciónhttp://54.81.141.168/handle/123456789/72094

Explorar

collection.search.results.head

Mostrando 1 - 2 de 2
  • Ítem
    Seismic response of hospitals at different scales
    (Pontificia Universidad Católica del Perú, 2019-03-21) Liguori, Nicola; Tarque, Nicola; Spacone, Enrico
    Nowadays, natural disasters are more frequents and destructives compared to the past, causing many deaths and injuries. Existing hospitals are defined essential structures that have the goal to protect the public health of citizen. They are called to resist not only to the impact of a disaster, but also to be operational in that case. Operational means that all the components of a health facility such as structures, architectural elements, contents, lifelines, key staff and the whole organizational system have to be functional. That objective is a challenge for the existing structures, especially for those built with obsolete seismic codes and in high seismic hazard areas like Lima. Furthermore, in case of an emergency, health facilities are called to response as a network in order to be more efficient and resilient. It implies that hospitals have to be managed not only at small-scale referring to the single hospital, but also at large-scale referring to the whole health system composed by all the health facilities involved in a determined area. Transfer of patients, staffs, water and medicines, can be moved under the coordination of a headquarters in this way. Starting from a developed health sector contingency plan in case of earthquakes for Lima metropolitan area, an assessment of the seismic performance of health facilities at large and small scale was carried out. At large-scale, two exploratory models were developed. The first one adapts to evaluate the basic seismic response capacity of hospitals, while the second one useful to assess the hospital treatment capacity of health facilities in the aftermath of a seismic event. Both models were carried out considering structural and nonstructural building damages using fragility curves provided by international standards, given the lack of Peruvian curves. Both models were proposed for a case study of 41 hospitals in Lima metropolitan. Given the lack of data about Peruvian building fragility curves, for a high rise infilled reinforced concrete hospital building, fragility curves were developed through the capacity spectrum approach including record-to-record variability. The method also allowed to to assess at small-scale the seismic structural performance of the investigate hospital building using the capacity analysis method.
  • Ítem
    An optimal seismic risk mitigation of public school buildings in Lima through the community resilience concept and the application of MCDM methods and GIS tools
    (Pontificia Universidad Católica del Perú, 2019-02-25) Anelli, Angelo; Santa Cruz, Sandra Cecilia; Laterza, Michelangelo; Tarque, Nicola; Vona, Marco
    Nowadays retrofitting strategies are a typical problem of public administrations. Due to the amount of essential and/or historic buildings that require seismic retrofitting and the restricted economic availability, it is necessary to prioritize interventions on a large territorial scale in order to optimize the allocation of available economic resources, provide transparent guidelines, and identify the best solution with an integrated view of the problem. In this thesis work, a prioritization methodology for seismic risk reduction in public schools is developed. The suggested methodology is based on the community resilience concept, Multi-Criteria Decision-Making (MCDM) methods, and Geographic Information Systems (GIS). It allows to define a proactive and resilient seismic risk mitigation strategy with a geographical, multidisciplinary, and multidimensional perspective. In order to illustrate the proposed methodology, prioritization strategies of retrofit interventions for 1825 public schools in the Lima Metropolitan Area are analyzed. The resilience of the communities has played a key role in the definition of the seismic risk mitigation policies. Three perceptions are identified to use the resilience concept in the present thesis work: seismic risk, emergency management, integration and social cohesion. They represent groups of interwoven technical, organizational, social, and economic dimensions. Based on these aspects, quantitative and qualitative prioritization criteria are selected and analyzed separately using GIS tools in order to model the schools seismic risk components and quantify the spatial and territorial relationships between schools and their surroundings. Through the assignment of criteria weights, numerous political scenarios are defined to perform predictive analysis that consider the possible uncertainties involved in planning and to enrich the decision-making process with more useful information. In order to compare them and identify the most optimal political scenario, a cost-benefit index and an innovative resilience indicator are determined for each one. A new and transparent framework is developed to help decision makers in selecting the political strategies, the relative prioritizations of interventions, and their intervention options in the pre- disaster and post-disaster phases. It provides a simplified methodology with solid technical and scientific bases that aims to optimize community resilience using a multidimensional and xviii spatiotemporal measurement. Decision makers and engineering professionals could use it as a decision support in the prevention and management of various natural and artificial threats.