Ciencias con mención en Ingeniería Informática

URI permanente para esta colecciónhttp://54.81.141.168/handle/123456789/170572

Explorar

Resultados de Búsqueda

Mostrando 1 - 3 de 3
  • Ítem
    Identificación del sentimiento de entidades en notas periodísticas basado en técnicas de procesamiento de lenguaje natural: una revisión de literatura
    (Pontificia Universidad Católica del Perú, 2021-03-15) Lau Li, Julio Ka Jau; Beltrán Castañón, César Armando
    El análisis de sentimiento a nivel de entidades sobre notas periodísticas es una tarea de una complejidad no trivial, lo que genera interés por parte de diferentes sectores, ya que esos tipos de fuentes de datos causa que los sentimientos identificados no convergen hacia un objetivo por su longitud extensa y variedad de temas. Sin embargo, no se sabe a ciencia cierta su dificultad, por lo que el objetivo principal es poder identificar los conocimientos e información disponible y existente en la actualidad para responder las preguntas formuladas. Por eso, se define una revisión de literatura tomando en consideración la base de datos Scopus y el empleo de palabras claves definidas por el método PICOC, donde se obtuvieron en total siete documentos, cuatro artículos y tres revisiones sistemáticas que evidencian una disponibilidad de espacio para experimentar y explorar, dado que principalmente se ha trabajado en medios con mayor cantidad de datos y menor complejidad como las redes sociales o encuestas de servicios. Esto se reafirmó al revisar los documentos de tesis asociados a este tema, donde inclusive su demanda ha superado a paradigmas de análisis de sentimientos más clásicos. Es por ello, que se concluye la necesidad de explotar esta área de conocimientos para poder satisfacer la demanda de información cada vez más granulada, relevante y compleja, aprovechando los recursos lingüísticos más óptimos para facilitar las labores que puedan presentarse.
  • Ítem
    Identificación del nivel de complejidad de texto para el entrenamiento de chatbots basado en Machine Learning: una revisión de literatura|
    (Pontificia Universidad Católica del Perú, 2021-02-16) Matos Ríos, Hans; Beltrán Castañón, César Armando
    El nivel de complejidad textual puede ser un inconveniente para algunas personas al momento de usar Chatbots, debido a que estos programas podrían dar respuestas cuyo nivel de complejidad no sea el que entienda el usuario. Entonces, aquellos Chatbots deberían ser entrenados con un conjunto de datos cuya complejidad textual sea la deseada, para evitar confusiones con los usuarios. Para ello, se define una revisión sistemática, en la cual se usan las bases de datos de Google Scholar, ACM Digital Library e IEEE Xplore, de las cuáles se obtiene la información necesaria empleando las palabras claves definidas por el método PICOC, obteniendo un total de treinta y ocho documentos que evidencian la existencia de distintas métricas para analizar la complejidad textual de textos, así como experimentos de entrenamiento con Chatbots y los correspondientes resultados de sus interacciones con los usuarios. Además, analizando documentos de tesis asociadas al tema de investigación, se refuerzan los conceptos de que la complejidad textual puede ser analizado mediante conjunto de métricas. Finalmente, en base a lo desarrollado en la revisión de la literatura y documentos de tesis, se presentan las conclusiones deducidas.
  • Ítem
    Analítica de datos en información pública de medios periodísticos y redes sociales para el análisis de sentimiento: una revisión de literatura
    (Pontificia Universidad Católica del Perú, 2021-02-02) Zárate Calderón, Gabriel Hélard; Beltrán Castañón, César Armando
    El análisis de sentimiento es un área de investigación importante en el procesamiento de lenguaje natural, la cual está en constante crecimiento especialmente por la generación de grandes volúmenes de información textual, y el avance tecnológico en lo que se refiere al almacenamiento y los algoritmos inteligentes para el análisis de esta. Esta tarea cada vez va tomando más fuerza su uso en diferentes aplicaciones computacionales dado el crecimiento exponencial del uso de medios digitales y redes sociales, las cuales, gracias a la información debidamente procesada, pueden ser muy valiosas para los negocios. Actualmente existen procedimientos ambiguos para la realización de dicha tarea y sobre todo para textos en español y de manera específica para notas periodísticas y publicaciones realizadas en redes sociales, todo ello por el hecho de la escasa cantidad de herramientas existentes para la presente tarea, por ende el proceso de clasificación de las polaridades de los sentimientos expresadas en los textos se realiza de manera manual por expertos en el tema, generándose así resultados ambiguos y sesgados según la experiencia del encargado, lo cual generaba resultados que no eran del todo fiables retándole valor a dicha tarea, además del hecho de que realizarlo de manera totalmente manual resultaba muy pesado y se realizaba en un periodo largo de tiempo. Para la realización de dicha tarea existen múltiples técnicas de aprendizaje de máquina y de aprendizaje profundo que son adecuadas para este, pero en el último año uno de los modelos que va siendo reconocido cada vez más para ser aplicado a resolver problemas de procesamiento de lenguaje natural son los modelos basados en transformers dadas sus buenas capacidades y los resultados que se obtienen con estos. Ante dicha problemática surge la necesidad de investigar más acerca de cómo se vienen implementando soluciones para la realización de análisis de sentimiento para hacer una comparativa sobre los modelos usados y además dadas las buenas capacidades de los modelos basados en transformers investigar más a fondo la utilidad de estos y las aplicaciones que tiene para así comprobar sus buenas capacidades.