Estadística
URI permanente para esta colecciónhttp://54.81.141.168/handle/123456789/9075
Explorar
Ítem Texto completo enlazado El análisis de correspondencias conjunto y múltiple ajustado(Pontificia Universidad Católica del Perú, 2012-08-15) Saavedra López, Ricardo Elías; Valdivieso Serrano, Luis HilmarEsta tesis presenta una revisión de los fundamentos teóricos de dos de las más recientes extensiones de la técnica estadística conocida como análisis de correspondencia (AC): el análisis de correspondencia conjunto (ACC) y el análisis de correspondencia múltiple ajustado (ACMA); y muestra una aplicación práctica de éstas a una encuesta de egresados de la Pontificia Universidad Católica del Perú. El análisis de correspondencia simple (ACS) es el primer alcance del análisis de correspondencias y se presenta cuando cada categoría de una variable se describe en función de la dependencia existente de los valores de otra única variable. Su extensión a más de 2 variables es conocida como el análisis de correspondencia múltiple (ACM). Si bien se puede encontrar literatura sobre el ACS y el ACM, es importante destacar que el ACC y el ACMA han sido poco difundidos, encontrándose escasa literatura sobre el tema, más aún, en nuestro idioma. Por lo tanto, se hace necesaria una revisión de las dos primeras a modo de contexto y una presentación metodológica y detallada de las dos últimas. Con la aplicación práctica se pretende obtener una representación de las facultades de los egresados de la PUCP en función del ingreso en su primer empleo relacionado con la formación recibida en la universidad y la percepción del grado de desarrollo de la competencia de comunicación recibida en la universidad. Esta aplicación consistiría en aplicar los 4 métodos descritos, comparándolos mediante nuevas técnicas que permiten reproducir las tablas de contingencia originales a partir de las representaciones obtenidas por los métodos indicados.Ítem Texto completo enlazado Modelos Chain Ladder estocásticos y aplicaciones al cálculo de reservas en compañías de seguros(Pontificia Universidad Católica del Perú, 2015-07-20) Mazuelos Vizcarra, Gisella Gabriela; Valdivieso Serrano, Luis HilmarThis document is intented to deepen the study of univariate and multivariate Chain Ladder methods for estimating reserves in an insurance company. It presents from a theoretical and applicative perspective both the univariate deterministic and stochastic Chain Ladder methods. Although, the first is the most used method by insurance companies due to its simplicity and lack of probabilistic assumptions, the second, proposed by Mack (1993), allows the construction of confidence intervals for the estimated reserves, which is invaluable for researchers. We also develop the General Multivariate Chain Ladder model, which has the basic premise to analyze the possible relationship that may exist between different development triangles, thus providing another tool to improve inferences and predictions of reserves. These methods have been developed and applied to a database of 3 types of health insurance, thus showing the advantages and disadvantages of each of them in different scenarios and providing various tools for decision making in meeting the future obligations of insurance companies.